در مهندسی پل چه زمینه های تحقیقاتی وجود دارد؟
ساعت ٦:۳٢ ‎ب.ظ روز ۱۳٩٤/٥/۸  کلمات کلیدی: آببندی و مقاوم سازی در شهرهای مازندران ، مقاوم سازی در متل قو ، مقاوم سازی در چالوس ، مقاوم سازی با frp در شمال کشور

با توجه به اهمیت پلها و روشهای نوین ساخت پل در دنیا، در کشور ما جای کار زیادی در زمینه فعالیتهای تحقیقاتی در علم مهندسی پل وجود دارد که در این بند تنها به چند مورد محدود اکتفا می‌شود:

- بررسی اندرکنش اجزای مختلف پل با یکدیگر

- اندرکنش دینامیکی وسایل نقلیه با عرشه (بررسی آثار ضربه، ترمز و شتاب، نیروهای گریز از مرکز)

- بررسی خستگی اجزای فولادی پلها تحت اثر بارهای چرخه‌ای پرتواتر و تأثیر روی مقاومت، سختی و شکل‌پذیری اجزا

- بررسی  و مقایسه سسیتمهای اتلاف انرژی در پلها

- ارزیابی آسیب‌پذیری لرزه‌ای پلها به روشهای احتمالاتی (منحنیهای شکنندگی) به کمک تحلیلهای تاریخچه زمانی

- مطالعات مربوط به اندرکنش خاک و سازه و اثر سختی و میرایی خاک روی رفتار دینامیکی پل

- تأثیر وجود خاکریز اطراف کوله‌ها در رفتار دینامیکی پل به هنگام زلزله

- اثر وجود درزهای انبساط در روسازه روی رفتار دینامیکی پلهای چند دهانه از نوع نشیمن

- سنجش میزان سختی نشیمن‌گاههای متداول (نظیر نئوپرنهای مسلح) در رفتار لرزه‌ای پل

- تأثیر وجود مقیدکننده‌های طولی (Restrainer) برای مهار دهانه‌های متوالی عرشه به منظور جلوگیری از سقوط عرشه

- تعیین میزان کفایت نصب دستگاههای افزایش دهنده پهنای نشیمن (Seat Extender) برای جلوگیری از سقوط عرشه

- اثر ضربه دهانه‌های انتهایی به دیواره پیشانی کوله به هنگام رخداد زلزله

- وجود خاکهای مسأله دار (نظیر خاکهای روانگرا) در خاکریز کوله‌ها و تأثیر آن در دوران دیواره کوله به هنگام زلزله

- انواع روشهای تقویت پایه‌‎ها در پلها به منظور جبران ضعفهای خمشی و برشی

- آزمونهای غیر مخرب (NDT) جهت تعیین مشخصات مقاومت و سختی اجزای سازه‌ای پلهای موجود

- روشهای چشمی و میدانی ارزیابی پلها به منظور اولویت‌بندی بهسازی لرزه‌ای پلها

- دستگاههای نوین کنترل و مونیتورینگ پلها طی بهره‌برداری برای سنجش رفتار پل و سیستم مدیریت پل (BMS)

- تعمیرات ادواری و اساسی در پلها و بازرسیهای ادواری پلها به منظور انجام تعمیرات و مقاصد نگهداری (Maintenance)

 

اجرای انواع واتر استاپ و واتر پروف های بتن

آببندی استخر در گیلان و مازندران

اجرای گروت های پایه سیمانی و اپوکسی

انواع چسب بتن ، چسب کاشی خمیری ، چسب سرامیک پودری

ضد یخ ها

افزودنی های بتن (انواع روان کننده و فوق روان کننده بتن ودیرگیر کننده و زودگیر کننده ها )

پوششهای محافظتی ( انواع ترمیم کننده بتن ، کیورینگ و … )

ماستیک ها

فروش انواع اسپیسر در استان گیلان

تولیدات خاص ساختمانی (کتراک ، روغن قالب و…)

آببندی تخصص ماست

عایق بی رنگ نما

عایق ساختمان

اجرا واتر استاپ

کاشت میلگرد

عایق سقف تهرانی

مقاوم سازی سازه تتخصص ماست

مهندس عباس پرتوی دیلمی

مهندس شهاب فلاح چای

09120215547


 

 
تحلیل غیرخطی و بهسازی لرزه ای پل ها چگونه انجام میشود؟
ساعت ٦:٢٩ ‎ب.ظ روز ۱۳٩٤/٥/۸  کلمات کلیدی: تحلیل غیرخطی و بهسازی لرزه ای پل ها ، مقاوم سازی سازه ها در مازندران ، مقاوم سازی در چابکسر ، مقاوم سازی در آمل و ساری

برای مقاصد ارزیابی آسیب‌پذیری لرزه‌ای پلها در کشور، از نشریه شماره 511 معاونت برنامه‌ریزی و نظارت راهبردی ریاست جمهوری که در سال 1390 با عنوان "راهنمای بهسازی لرزه ای پلها" منتشر شده است استفاده می‌شود. در این راهنما، ارزیابی بر اساس کنترل سازه برای سطوح عملکرد صورت می‌پذیرد. اهداف بهسازی بر مبنای اهمیت مسیر ترافیکی و ویژگی‌های سازه‌ای پل، لرزه‌خیزی و مشخصه‌های ساختگاه و عملکرد مورد انتظار از پل در مدیریت بحران پس از وقوع زلزله، در ارتباط با دسترسی و خدمت‌رسانی صورت می‌گیرد. به منظور بهسازی لرزه ای پلها در این نشریه، با توجه به عمر مفید آنها در مقایسه با ساختمانها، دوره بازگشت 150 سال در سطح خطر 1 (سطح بهره برداری) و 1000 سال در سطح خطر 2 (سطح ایمنی) در نظر گرفته می‌شود. علاوه بر جنبه‌های عملکردی سازه پل در مقابل زلزله، آثار ناشی از بروز پدیده‌هایی مانند روانگرایی، گسترش جانبی، فرو نشست خاک، گسلش سطحی، زمین لغزش و .... حائز اهمیت می‌باشد.این نشریه مشابه دستورالعمل بهسازی لرزه‌ای پلهای بزرگراهی ایالات متحده (FHWA Seismic Retrofitting Manual for Highway Structures-2006) از چندین روش برای ارزیابی آسیب‌پذیری تحلیلی استفاده می‌کند که معروف‌ترین آنها روش تعیین نسبتهای ظرفیت به تقاضا برای اجزای منفرد پل می‌باشد.

به منظور شروع مطالعات برای ارزیابی آسیب‌پذیری پلها، ابتدا لازم است تا مدارک طراحی و مدارک کارگاهی اجرای پل جمع‌آوری گردد. در صورت عدم وجود مستندات فنی شامل نقشه‌های سازه‌ای، دفترچه‌های کارگاهی مقاومت مصالح، گزارشهای ژئوتکنیک و ...، لازم است تا طی مراحل میدانی، سونداژهای شناسایی و آزمایشهای محلی و آزمایشگاهی، مشخصات فنی مورد نیاز برای ارزیابی پل در وضع موجود تهیه شود. در مرحله بعد شناسنامه فنی پل در صورتی که وجود نداشته باشد تهیه می‌شود. در این مرحله گزارشی از آسیب‌پذیری پل به روش کیفی تهیه می‌گردد و مشخص می‌شود که به مطالعات تحلیلی نیاز هست یا نه. در صورت نیاز به انجام مطالعات تفصیلی، مدلسازی اجزای سازه‌ای پل انجام می‌شود و ارزیابی آسیب‌پذیری اجزای سازه‌ای و غیرسازه‌ای به روش کمّی و تحلیلی صورت خواهد گرفت و گزارشی از این مرحله تهیه می‌گردد. در صورت نیاز به بهسازی، گزینه‌هایی برای رفع آسیب‌پذیریهای موجود ارائه می‌گردد و در نهایت طرح بهسازی انتخاب شده، با هماهنگی کارفرما نهایی می‌گردد و جزئیات اجرایی آن به همراه تهیه اسناد مناقصه اجرای طرح به کارفرما ارائه می‌گردد.

 

گروه آموزشی تنباکوچی


 
مزایای استفاده از FRP در مقایسه با سایر روشهای بهسازی در سازه های بتنی
ساعت ٦:٢٧ ‎ب.ظ روز ۱۳٩٤/٥/۸  کلمات کلیدی: مزایای استفاده از frp در مقایسه با سایر روشها ، مزایای استفاده از frp ، آببندی استخر در لاهیجان ، آببندی و مقاوم سازی در شهرهای مازندران

ساختمان های بتنی یکی از رایج ترین نوع سازه ها می باشند که در صورت عدم طراحی مناسب توسط آیین نامه های معتبر داخلی و خارجی تحت زلزله های محتمل شدیدا آسیب پذیر بوده و تلفات جانی و مالی زیادی را ایجاد می نمایند.

آسیب پذیری لرزه ای ساختمان های بتنی ممکن است بعلت عدم شکل پذیری و یا مقاومت کافی تیر و ستون باشد.

برای مقاوم سازی لرزه ای این ساختمان ها روش های متعددی وجود دارند که از بین آنها می توان به موارد زیر اشاره نمود :

1- مقاوم سازی با دیوار برشی

2- مقاوم سازی با پوشش بتنی

3- مقاوم سازی با ژاکت فلزی

4- مقاوم سازی با الیاف پلیمری

مقاوم سازی با الیاف پلیمری نسبت به روش های سنتی تداخل کمتری در کابری ساختمان در حین اجرا ایجاد می نماید.

در مواردی که استفاده از ماشین آلات سنگین و یا توقف کاربری ساختمان در هنگام اجرا امکان پذیر نیست. استفاده از الیاف پلیمری (FRP) تنها روش مقاوم سازی می باشد.

از دیگر مزایای مصالح پلیمری (FRP) نسبت بالای مقاومت به وزن و سختی به وزن می باشد. همچنین دارای قابلیت اجرای سریع و آسان نیز می باشد.

هم اکنون استفاده از این روش در مورد پل ها متداول می باشد. روش سنتی استفاده از صفحات فولادی در مقاوم سازی تیرها و عرشه پل دارای مشکلاتی از جمله افزایش وزن سازه، صعوبت دسترسی و زمان بالای اجرا می باشد

دیگر مزیت FRP ها اتصال بهتر بین ورق های FRP با تیر یا ستون نسبت به اتصال بین ژراکت های فولادی با تیر یا ستون می باشد زیرا FRP ها با چسب اپوکسی بطور یکنواخت به سطح تیر یا ستون میچسبند امّا ژراکت های فولادی توسط چند بولت به تیر یا ستون متصل می شوند.

اجرای انواع واتر استاپ و واتر پروف های بتن

آببندی استخر در گیلان و مازندران

اجرای گروت های پایه سیمانی و اپوکسی

انواع چسب بتن ، چسب کاشی خمیری ، چسب سرامیک پودری

ضد یخ ها

افزودنی های بتن (انواع روان کننده و فوق روان کننده بتن ودیرگیر کننده و زودگیر کننده ها )

پوششهای محافظتی ( انواع ترمیم کننده بتن ، کیورینگ و … )

ماستیک ها

فروش انواع اسپیسر در استان گیلان

تولیدات خاص ساختمانی (کتراک ، روغن قالب و…)

آببندی تخصص ماست

عایق بی رنگ نما

عایق ساختمان

اجرا واتر استاپ

کاشت میلگرد

عایق سقف تهرانی

مقاوم سازی سازه تتخصص ماست

مهندس شهاب فلاح چای

09120215547


 
FRP چیست؟
ساعت ٦:٢٤ ‎ب.ظ روز ۱۳٩٤/٥/۸  کلمات کلیدی: frp چیست؟ ، مقاوم سازی با frp ، مقاوم سازی لرزه ای ، مقاوم سازی در شهر شمالی کشور

مخفف Fiber Reinforced Polymers میباشد.

از FRP در بهسازی سازه های بتنی استفاده میشود.

با اتصال و یا دور پیچ کردن عضو بتنی با FRP میتوان رفتار لرزه ای عضو را بهبود بخشید.

FRP توسط چسب های مخصوصی به عضو بتنی متصل میگردد

FRP ها یک زیرگروه از طبقه موادی هستند که اصلیت آنها مرکب بودن است.

مواد مرکب موادی هستند که از ترکیب دو یا بیشتر ماده ساخته می شوند و در مقیاس بزرگ، به شکل یک ماده مفید و جدید با خواص بهبود یافته که برتر از ترکیباتش بصورت انفرادی است عمل میکند.

یک FRP ترکیب خاصی از دو ماده کامپوزیتی متشکل از الیاف با مقاومت بالا و جاسازی شده در چسب پلیمیری است.

از آنجایی که FRP ها از دو ماده مجزا تشکیل شده است، خواص کلی ماده FRP در درجه اول به مشخصات اختصاصی هر یک از آن مواد بستگی دارد.

این نتیجه می دهد که در آموزش قبل از بحث در مورد خصوصیات ماده مرکب FRP به صورت یک ماده یکپارچه، به بررسی نقش و خصوصیات هریک از آن اجزا تشکیل دهنده یعنی الیاف و چسب به طور مجزا باید پرداخته شود.

پلیمرهای تقویت کننده الیافی (FRPs) ، موادی نسبتاً جدید از گروه مواد غیر خورنده، با مقاومت بالا و سبک وزن در طی 15 سال گذشته به عنوان یک ماده کاربردی در تعداد زیادی از کاربردهای مهندسی سازه پدیدار شده اند.

همانطور که از نام این مواد مشخص است، این مواد مرکب از الیاف با مقاومت بالا که در چسب پلیمری قرار می گیرند، می باشند. الیاف بسیار قوی و سفت هستند و چسب نیز با چسباندن آنها به یکدیگر، کاری می کند که آنها بصورت یک ماده مرکب یکپارچه عمل کنند.

برخی از مزایای مواد FRP که معمولاً ذکر می شود، در مقایسه با مواد مرسوم مانند فولاد شامل موارد زیر می شود:

- نسبت بالای مقاومت به وزن

- دوام فوق العاده در محیط های مختلف

- سهولت و سرعت در نصب، انعطاف پذیری و استفاده کاربردی

- نارسانا از نظر الکترومغناطیسی، که می تواند در سازه های خاص مانند امکانات تصویربرداری مغناطیسی مهم باشد

- توانایی مناسب کردن خواص مکانیکی با شرایط توسط انتخاب جهت قرارگیری الیاف در چسب

- دوام در برابر خاصیت خستگی

- و رسانایی پایین گرمایی

 

گروه آموزشی تنباکوچی

 

اجرای انواع واتر استاپ و واتر پروف های بتن

آببندی استخر در گیلان و مازندران

اجرای گروت های پایه سیمانی و اپوکسی

فروش انواع چسب بتن ، چسب کاشی خمیری ، چسب سرامیک پودری

ضد یخ ها

افزودنی های بتن (انواع روان کننده و فوق روان کننده بتن ودیرگیر کننده و زودگیر کننده ها )

پوششهای محافظتی ( انواع ترمیم کننده بتن ، کیورینگ و … )

ماستیک ها

فروش انواع اسپیسر در استان گیلان

تولیدات خاص ساختمانی (کتراک ، روغن قالب و…)

آببندی تخصص ماست

عایق بی رنگ نما

عایق ساختمان

اجرا واتر استاپ

کاشت میلگرد

عایق سقف تهرانی

مقاوم سازی سازه تتخصص ماست

مهندس عباس پرتوی دیلمی

مهندس شهاب فلاح چای

09120215547

 

 
طراحی لرزه ای بر اساس عملکرد چیست ؟
ساعت ٦:٢۱ ‎ب.ظ روز ۱۳٩٤/٥/۸  کلمات کلیدی: مقاوم سازی در رامسر ، مقاوم سازی در چابکسر ، مقاوم سازی در رشت ، طراحی لرزه ای بر اساس عملکرد چیست ؟

آیین نامه های قدیمی ، زلزله را تنها یک نیرو در نظر میگرفتند و ضوابط و مقرراتی را تعیین میکردند که ساختمان بتواند در برابر این نیرو مقاومت کند. ( طراحی بر اساس نیرو )


 

اما نسل جدید آیین نامه ها ، فلسفه جدیدی به نام طراحی بر اساس عملکرد را مطرح میکنند.

بدین معنا که طراحی ساختمان متناسب با عملکردی که از ساختمان انتظار داریم انجام میشود.

 

در این نسل مطرح میگردد ساختمان مقاوم در برابر نیروی زلزله باید در برابر مقدار مشخصی نیرو مقاومت کرده و بتواند مقدار تغییرمکان تعیین شده ای را بدهد.( طراحی بر اساس نیرو و تغییرمکان ) مقدار تغییرمکان و نیروی مذکور با توجه به سطح عملکرد ساختمان تعیین میگردد.


 

با تحلیلهای غیرخطی میتوان مقدار نیرو و تغییرمکان ایجاد شده در اعضاء را کنترل کرد و کفایت تامین سطح عملکرد مورد نظر را با دقت خوبی بررسی نمود.

 گروه آموزشی تنباکوچی

اجرای انواع واتر استاپ و واتر پروف های بتن

آببندی استخر در گیلان و مازندران

اجرای گروت های پایه سیمانی و اپوکسی

انواع چسب بتن ، چسب کاشی خمیری ، چسب سرامیک پودری

ضد یخ ها

افزودنی های بتن (انواع روان کننده و فوق روان کننده بتن ودیرگیر کننده و زودگیر کننده ها )

پوششهای محافظتی ( انواع ترمیم کننده بتن ، کیورینگ و … )

ماستیک ها

فروش انواع اسپیسر در استان گیلان

تولیدات خاص ساختمانی (کتراک ، روغن قالب و…)

آببندی تخصص ماست

عایق بی رنگ نما

عایق ساختمان

اجرا واتر استاپ

کاشت میلگرد

عایق سقف تهرانی

مقاوم سازی سازه تتخصص ماست

مهندس شهاب فلاح چای

09120215547

 


 

 
بهسازی لرزه ای چیست؟
ساعت ٦:۱٩ ‎ب.ظ روز ۱۳٩٤/٥/۸  کلمات کلیدی: بهسازی لرزه ای چیست؟ ، بهسازی لرزه ای در گیلان و مازندران ، بهسازی لرزه ای ، مقاوم سازی سازه های فلزی در مازندران

بهسازی لرزه ای به معنای بهبود بخشیدن به وضعیت لرزه ای سازه های موجود است.

 

در بهسازی لرزه ای هدف ، برابر ساختن ظرفیت سازه با نیاز لرزه ای است که میتوان با افزایش ظرفیت سازه و یا با کاهش نیاز لرزه ای به این هدف رسید.


افرایش ظرفیت سازه با افزایش سختی و مقاومت آن امکان پذیر است که به آن مقاوم سازی میگویند.


کاهش نیاز لرزه ای سازه نیز میتواند از طرق مختلف انجام شود مانند : افزایش شکل پذیری ، کاهش جرم ، کاهش نامنظمی ، و استفاده از تکنولوژیهای نوین طرح لرزه ای مانند استفاده از

جداسازی لرزه ای ، میراگرها و ...


در ارائه طرح بهسازی ، مهندس بهساز بایستی به دو مقوله اجرایی و اقتصادی بودن طرح فوق العاده توجه کند. چراکه بهسازی لرزه ای حرکت بر لبه تیغ است.


چنانچه مهندس بهساز در طرح خود از تمامی ظرفیت سازه استفاده نکرده باشد طرح توجیه اقتصادی خود را از دست داده و نوسازی بر بهسازی ارجعیت میابد.


لازم به ذکر است با استفاده از تحلیلهای غیرخطی میتوان از ظرفیت سازه به طور کامل استفاده کرد.

اجرای انواع واتر استاپ و واتر پروف های بتن

آببندی استخر در گیلان و مازندران

اجرای گروت های پایه سیمانی و اپوکسی

انواع چسب بتن ، چسب کاشی خمیری ، چسب سرامیک پودری

ضد یخ ها

افزودنی های بتن (انواع روان کننده و فوق روان کننده بتن ودیرگیر کننده و زودگیر کننده ها )

پوششهای محافظتی ( انواع ترمیم کننده بتن ، کیورینگ و … )

ماستیک ها

فروش انواع اسپیسر در استان گیلان

تولیدات خاص ساختمانی (کتراک ، روغن قالب و…)

آببندی تخصص ماست

عایق بی رنگ نما

عایق ساختمان

اجرا واتر استاپ

کاشت میلگرد

عایق سقف تهرانی

مقاوم سازی سازه تتخصص ماست

مهندس عباس پرتوی دیلمی

مهندس شهاب فلاح چای

09120215547


 

 
تحلیل غیرخطی چیست؟
ساعت ٦:۱٢ ‎ب.ظ روز ۱۳٩٤/٥/۸  کلمات کلیدی: تحلیل غیرخطی ، تحلیل غیر خطی چیست ، ضریب رفتار r ، آیین نامه 2800

در آیین نامه های قدیمی ( استاندارد 2800 ) طراحی سازه با فرض خطی بودن ساختمان انجام میشود و از تحلیل های خطی که رابطه بین نیرو و تغییر مکان را خطی در نظر میگیرد بهره میبرند.


 

اما همانطور که میدانیم ساختمان در اثر زلزله پس از محدوده خطی وارد حوزه غیرخطی میشود و رابطه بین نیروی برش پایه و تغییرمکان مرکز جرم بام از حالت خطی خارج شده و غیرخطی میگردد.


در تحلیل های خطی با استفاده از ضریب رفتار( R ) میزان برش پایه طراحی در حد خطی کاهش میابد و سازه با این برش پایه کاملا خطی تحلیل و طراحی میشود و انتظار میرود که سازه بقیه برش پایه را در محدوده غیرخطی با تشکیل مفاصل پلاستیک مستهلک کند.


اما چون تحلیل مورد استفاده خطی بوده نمیتوان کنترل کرد که آیا این مقدار نیروی برش پایه واقعا در حوزه غیرخطی مستهلک میشود یا خیر.

 

در نسل جدید آیین نامه ها که فلسفه طراحی لرزه ای بر اساس عملکرد مطرح میشود برای رسیدن ساختمان به سطح عملکرد مورد نظر نیاز به ارزیابی دقیق ساختمان است که این ارزیابی دقیق نمیتواند با تحلیل های خطی ( اعمال ضریب R ) انجام شود.


در تحلیل های غیرخطی رفتار واقعی سازه با در نظر گرفتن ورود آن به حوزه غیرخطی و تشکیل مفاصل پلاستیک به طور کامل مورد ارزیابی قرار میگیرد.

 

منبع :گروه آموزشی تنباکوچی

 

 

 
مقاوم سازی ، و آببندی استخر و مخازن در گیلان و مازندران
ساعت ۸:۳٩ ‎ق.ظ روز ۱۳٩٤/٥/۸  کلمات کلیدی: الیاف frp ، الیاف اف ار پی ، اجرای الیاف اف ار پی ، مقاوم سازی در گیلان و مازندران

اجرای انواع واتر استاپ و واتر پروف های بتن

آببندی استخر در گیلان و مازندران

اجرای گروت های پایه سیمانی و اپوکسی

انواع چسب بتن ، چسب کاشی خمیری ، چسب سرامیک پودری

ضد یخ ها

افزودنی های بتن (انواع روان کننده و فوق روان کننده بتن ودیرگیر کننده و زودگیر کننده ها )

پوششهای محافظتی ( انواع ترمیم کننده بتن ، کیورینگ و … )

ماستیک ها

فروش انواع اسپیسر در استان گیلان

تولیدات خاص ساختمانی (کتراک ، روغن قالب و…)

آببندی تخصص ماست

عایق بی رنگ نما

عایق ساختمان

اجرا واتر استاپ

کاشت میلگرد

عایق سقف تهرانی

مقاوم سازی سازه تتخصص ماست

مهندس عباس پرتوی دیلمی

مهندس شهاب فلاح چای

09120215547

 

 
عوامل تخریب بتن و راه کارهای ترمیم بتن
ساعت ۸:۳٢ ‎ق.ظ روز ۱۳٩٤/٥/۸  کلمات کلیدی: مقاوم سازی در شمال کشور ، مقاوم سازی در مازندران ، کاشت میلگرد در مازندران ، کاشت رل بولت در گیلان و مازندران

 

 

 

 

 

 

 

 

 

 







این مقاله ترجمه ای از فصل سوم کتاب THE GUID CONCRETE REPAIR که توسط کارشناسان و مهندسان دایره تعمیرات و اصلاح دفتر خدمات فنی و مهندسی وزارت کشور ایالات متحده آمریکا U.S department of the interior bureau of reclamation technical service centerو به منظور استاندارد سازی متد های ترمیمی بتن به صورت موضوعی و مصور تهیه و منتشر گردیده است.

 

کلینیک بتن ایران در راستای ارتقا آموزشی فعالان ، مهندسان و کارشناسان در زمینه مقاوم سازی و ترمیم سازه های بتنی، که دایره ی وسیعی از مشاوران و بهره برداران واحدهای صنعتی که سازه های بتنی سنگین ، از قبیل کانال های سر ریز سد ها ، سیلو ها، مخازن و تصفیه خانه ها ، کلاریفایر ها و کولینگ تاور ها، حوضچه های اسید و ... زیر نظر آنان می باشد تا کارشناسان و مدیران پروژه و کارفرمایان دولتی را در بر می گیرد ، با اجازه مترجم ، متن حاضر را ارائه نموده است.

 

این فصل از کتاب به علل و عامل آسیب ها و خرابی های شایع در سازه های بتنی می پردازد و به صورت خلاصه اشاراتی به نحوه ترمیم و حل مشکلات ناشی از این صدمات می پردازد.

 

علل تخریب بتن

 

علل شایع آسیب به بتن تعمیراتی در این فصل مورد بحث قرار گرفته است. بحث درمورد هر عامل آسیب عبارت است از:

 

1- شرح علت و چگونگی آسیب رساندن آن به بتن

 

2- بحث و یا تهیه ی فهرستی از روش های مناسب و مواد لازم برای تعمیر آن نوع خاص از آسیب بتنی

 

شاکله ی این فصل را شناخت اهمیت تعیین علت آسیب رسیدن به بتن قبل از انتخاب روش تعمیر تشکیل می دهد. انتظار می رود که بحث های مشروح انتخاب روش تعمیر، همانطور که در فصل چهارم آمده (به زودی این فصل نیز در اختیار دوستان قرار خواهد گرفت - مترجم) است ، قبل اجرا مد نظر قرار گیرد.

 

1. آب اضافه در مخلوط بتن

 

استفاده از آب بیش از حد در مخلوط های بتن شایع ترین علت آسیب به بتن است. آب بیش از حد مقاومت بتن را کاهش می دهد ، مدت زمان کیورینگ و انقباض خشک را افزایش داده ، موجب افزایش تخلخل وخزش شده و مقاومت بتن در برابر سایش را کاهش می دهد.

 

 

 

 

شکل 1 اثرات تجمعی آب به سیمان نسبت به دوام بتن را نشان می دهد. در این شکل، دوام بالای بتن با رنج پایین نسبت آب به سیمان وهوای مصرفی متناسب است. خسارت ناشی از آب اضافی می تواند به سختی قابل تشخیص باشد زیرا که معمولا این آسیب بوسیله خرابی های علت های دیگر پوشانده شده است. به عنوان مثال، ترک خوردگی ناشی از انجماد و ذوب ، رشد فرسودگی در اثر سایش، یا ترکهای جمع شدگی ناشی از خشک شدن، اغلب به عنوان آسیبهای بتن شناخته می شوند ، اما در واقعیت، آب اضافی باعث پایین آمدن دوام بتن شده که این خود به علل دیگر اجازه ی حمله به بتن را خواهد داد. در طول آزمایشات پتروگرافی، گاهی اوقات می توان موارد شدید وجود آب اضافی دربتن سخت شده را از طریق حفرات مویینه آب یا حفره های آب در زیر سنگدانه های بزرگ شناسایی کرد. معمولا، بررسی گزارشات بچینگ ، سوابق طرح اختلاط و بازرسی های میدانی استفاده از بیش از حد از آب را در بتن آسیب دیده تایید می کنند. البته باید در نظر داشت، به هر حال ، آب اضافه شده به بتن در تراک میکسر در هنگام حمل به محل پروژه و یا به خود بتن طول عملیات بتن ریزی، غالبا مکتوب نشده و مستند نمی گردد.

 

تنها تعمیر دائمی بتن آسیب دیده به علت آب اضافی حذف و جایگزینی بتن است.با این حال، با توجه به میزان و ماهیت خسارت، تعدادی از روش های نگهداری و یا تعمیر می تواند درافزایش عمر سازه بتنی مفید باشد. اگر آسیب با تشخیص زودرس همراه بوده و عمق آسیب کم ( کمتر از 5/1 اینچ) است، استفاده از ترکیبات آب بندی بتن، مانند مواد جامد غلظت بالا( بیشتر از 15 درصد) الیگومریک alkyl alkoxy سیلوکسان یا سیستم های سیلان و یا سیستم مونومر methacrylic با وزن مولکولی بالا نفوذ آب را کاهش داده و مقاومت بتن در برابر چرخه ی انجماد و ذوب را بهبود بخشیده و تخریب بتن را کاهش می دهد.

 

چنین سیستمی تعمیراتی نیازمند به برنامه بازبینی و تعمیر در فواصل زمانی 5 تا10 ساله است. بتن ریزی با چسب اپوکسی برای پیوند بتن قدیم به جدید برای تعمیر خسارت هایی که گستردگی آنها بین 5/1 تا 6 اینچ به داخل بتن تخمین زده می شود، و جایگزینن کردن بتن برای تعمیر آسیب هایی با عمق 6 اینچ یا بیشتر توصیه می شود.

 

2 – طراحی نادرست

 

عیوب در طراحی می تواند انواع بیشماری از آسیبهای بتن را ایجاد کند که بحث در مورد همه انواع آن فراتر از حوصله ی این کتاب است

 

با این حال، یک از اشکالات طراحی که بتازگی تا حد زیادی رایج شده است ، قرار گرفتن قطعات فلزی EM-bedded - جاسازی شده – مانند خط لوله برق یا جعبه تقسیم در نزدیکی سطوح بیرونی سازه های بتنی است. ترک در بتن و در اطراف چنین محلهایی تشکیل شده و اجازه می دهد سرعت تخریب و فرایند انجماد و ذوب سریعتر رخ می دهد. بیس های فلزی راه آهن ها و گارد ریل ها که بیش از حد در نزدیکی لبه ی بیرونی دیوارهای قرار داده شده اند ، پیاده رو ها و نرده های جان پناه نیز نتایج مشابهی را رقم می زنند.

 

این قطعات فلزی و گسترش نفوذپذیری درون بتن با تغییرات دما متناسب است. با انبساط فلز تنش کششی در بتن ایجاد شده، و در نتیجه باعث ایجاد ترک خوردگی و پس از آن سبب آسیب ذوب و انجماد می گردد.طول گارد ریلها یا نرده های جانپناه می تواند مشکل دیگری ایجاد کند.لوله های مورد استفاده در آنها نیز دچار انبساط وانقباض طولی در اثر تغییرات دما شده واگر مفاصل لغزش کافی تعبیه نشده باشد،این انبساط و انقباض عامل ترک خوردگی در نقاط اتصال بیس ها به بتن می گردد.این ترک ها نیزسرعت آسیب های ناشی از انجماد و ذوب در بتن را افزایش می دهد.

 

پوشش و کاور ناکافی بتن بر روی شبکه آرماتور یک علت شایع آسیب به سازه های پل و بزرگراه است.این مشکل در سازه های آبی و آبیاری هم وجود دارد .برای احیا و تعمیر معمولا نیاز به حداقل 5/7سانتیمتر پوشش بتن بر روی شبکه آرماتور سازه هست، اما در محیط های خورنده که بتن در معرض اثرات مخرب سولفات ها، اسیدها، یا کلریدها قرار دارد این میزان باید حداقل10 سانتیمتر باشد.

 

پوشش ناکافی اجازه می دهد تا خوردگی در آرماتورها آغاز گردد، ایجاد اکسید آهن و محصولات جانبی ناشی از این خوردگی نیاز به فضای بیشتر در بتن داشته و در نتیجه ترک خوردگی و متورق شدن بتن را باعث می گردند.

 

عدم استفاده از مفاصل انقباضی کافی و یا عدم رعایت فواصل درزهای انبساطی به منظورتوزیع یکنواخت دما در اسلب بتنی به آن آسیب میزند و بتن با مفاصل انقباض ناکافی ترک خواهد خورد و این ترک ها در نقاطی که نیاز به درز انبساط بوده اما تعبیه نشده مشهود است.متاسفانه، دیدن چنین ترکهایی به عنوان درز انقطاع های شکل گرفته یا بریده شده چندان جذاب نیست اما ساختار این ترک ها تنش های کششی را کنترل می کند و علی رغم ظاهرهرچند ناخوشایند شان، به ندرت نیاز به تعمیردارند. اسلب بتنی ساخته شده با درزهای انبساطی ناکافی و یا خیلی تنگ می تواند باعث آسیب های جدی به عرشه پل، جاده سد، و طبقات بلند، سطوح شیب دار، سرریز های سد گردد.هر کدام از این بتن ها چرخه طولانی تغیرات روزانه، فصلی و سالیانه دما در اثر تابش های خورشیدی را تجربه می کنند. در نتیجه انبساط بتن در سطوح فوقانی اسلب ها که دمای بالا تری دارند، بیشتر و در بخش ها و لبه های تحتانی که خنک تر هستند کمتر است.چنین انبساطی می تواند موجب لب به لب و مماس شدن بخش های فوقانی دال ها در محل درز های انقطاع شده که در این شرایط تنها راه ممکن برای حرکت آسان اسلب ها به سمت بالاست که باعث ایجاد تورق در فرم بتن می گردد، که از محل درزها آغاز شده و از1 تا 2 اینچ پشت دال ها پیشروی می کنند. این تورق ها به طور معمول در شبکه فوقانی آرموتور بندی واقع شده اند. در اقلیم های معتدل، تورق بتن در دو سوی درزهای انبساطی باقی مانده و آسیب بیشتر وارد نمی شود. در آب و هوای سرد، به هر حال، آب می تواند چرخه روزانه ای از انجماد و ذوب را وارد درزهای ناشی از تورق کند. این باعث می شود که ورقه ورقه شدن بتن رشد کرده و از 3 تا 5 فوت دورتر از محل درز گسترش یابد.

 

شکل 2 نمونه ای اغراق شده از این آسیب است.

 

مرمت و بازسازی آسیب های ناشی از طراحی معیوب تا زمانی که اشکالات طراحی کاهش یابد، بیهوده است.قطعات فلزی جاسازی شده می تواند برداشته شود، نرده ها را می توان به مفاصل لغزشی مناسب مجهز نمود، و بیس پلیت های گارد ریل را می توان به محل هایی که بتن در آنجا مقاومت کافی در برابر نیروهای کششی را دارد جابجا کرد.جبران کمی کاور بتن روی شبکه آرماتور بندی بسیار دشوار است، اما می توان مواد مناسبی برای تعمیر و مقاومت در برابر انواع خاصی از خوردگی را انتخاب نمود. همینطورعملیات تعمیرمی تواند با استفاده از مواد آب بندی بتن محافظت شده وبا استفاده از پوشش های آب بند از نفوذ آب به بتن جلوگیری نمود و آنرا کاهش داد.

 

دال هایی با تعداد کم درزهای انبساطی را نیز می توان با استفاده از کاتر برش داد و به تعداد درز های انبساطی افزود و یا با افزایش عرض درز ، آنرا برای مقابله با اثرات انبساط گرمایی آماده نمود.

 

آسیب ناشی از اشکالات طراحی به احتمال زیاد می تواند با استفاده از جایگزینی بتن ، جایگزینی بتن با استفاده از چسب اپوکسی، و یا ترکیبی از چسب و ملات های تعمیری اپوکسی مرتفع شود.

 

3- نقایص ساخت

 

آسیب های معمول وارد بر بتن در اثر اجرای نادرست مشتمل بر کرمو و متخخل شدن بتن، در رفتن قالب ، اشتباهات محاسباتی و اندازه گیری و نقایص تکمیل کار است.

 

کرمو شدن و تخلخل بتن در واقع مناطقی هستند که بر اثر ناتوانی ملات سیمان در پر کردن فضاهای موجود اطراف سنگدانه ها و در نتیجه خالی ماندن آنها ایجاد می گردند. در صورت خفیف بودن این نقیصه به شرط اینکه از باز کردن قالبها بیش از 24 ساعت نگذشته باشد می توان از ملات سیمان استفاده نمود.اگر عملیات ترمیم بیش از 24 ساعت بعد از برداشتن قالب و با تاخیرصورت گرفته، یا سطح کرمو شده ی بتن گسترده است، باید ابتدا بتن های معیوب برداشته شده ، سپس با استفاده از ملات ترمیمی آماده ، به همراه چسب پیوند دهنده اپوکسی ، تعمیر صورت گیرد ، روش نهایی نیز جایگزینی کل بتن با بتن جدید است بعضی از نقص های جزئی ناشی از حرکت قالب یا در رفتن قالب را می توان با استفاده از سنگ ساب صاف و پرداخت نمود.در اکثر موارد این رفع نقص به سادگی توسط مالک پذیرفته شده ، والا مجری موظف است نسبت به تخریب و جایگزینی آن بخش آسیب دیده از بتن اقدام کند.

 

فرصت های زیادی برای ایجاد خطاهای ابعادی در ساخت و ساز بتن وجود دارد.اگربتوان ، بهترین روش معمولا پذیرفتن نقص به جای تلاش برای تعمیر آن است.در غیر این صورت اگر طبیعت نقص کیفی بتن به گونه ای باشد که نتوان آن راپذیرفت ، بهترین تصمیم، تخریب و باز سازی مجدد است. در بعضی موارد، خطاهای ابعادی را می توان با تخریب بتن معیوب و جایگزینی آن با بتن جدید با استفاده از چسب اپوکسی اصلاح کرد.

 

نقایص تکمیلی معمولا شامل پرداخت بیش از حد(سطح نهایی) و یا اضافه کردن آب و (یا) سیمان به سطح در طی مراحل اتمام کار است.در هر دو مورد، سطح متخلخل و نفوذ پذیر ودر نتیجه کم دوام می شود.سطوح ضعیف نهایی در همان اوائل عمر سازه ترک خورده و خرد می شوند.مرمت و بازسازی سطح خرد شده شامل حذف بتن ضعیف و جایگزینی آن با بتن جدید با استفاده از چسب پیوندی اپوکسی است است.اگر روند تخریب به سرعت تشخیص داده شود، می توان عمر (بتن نهایی) سطح را با استفاده از ترکیبات آب بند کننده بتن افزایش داد.

 

4-تخریب سولفاتی

 

سولفات سدیم، منیزیم و کلسیم، از جمله نمکهایی هستند که معمولا در خاکهای قلیایی و زیرزمینی غرب ایالات متحده ( در ایران مناطق ساحلی جنوب و همچنین غرب کشور یافت می شوند(.این گروه از سولفات ها با آهک هیدراته و هیدرات آلومینات موجود در خمیر سیمان واکنش شیمیایی داده و تشکیل سولفات کلسیم و کلسیم سولفات آلومینات می دهند .حجم محصولات جانبی این واکنش بیشتر از حجم خمیر سیمان تولید شده است، بنابراین امکان شکستن بتن در اثر انبساط وجود دارد . سیمان پرتلند نوع 5، که درصد آلومینات کلسیم پایینی دارد، در برابر واکنش شیمیایی و حمله سولفات ها بسیار مقاوم است . بنابراین در جاهایی که سازه بتنی در مجاورت خاک و یا آبهای زیر زمینی دارای سولفات قرار دارد باید از این نوع سیمان استفاده کرد.

 

نگاه کنید به جدول 2 از کتابچه راهنمای بتن (نوشته شده: دایره اصلاح، 1975) بخش راهنمای مواد و ویژگی های طرح اختلاط برای بتن های محیط های سولفاتی .

 

گاهی اوقات استفاده از یک پوشش نازک بتن پلیمری می تواند برای بتنی که دستخوش فرسایش و آسیب مدام به علت قرار گرفتن در معرض سولفاتها ست ، مفید باشد و یا استفاده از مواد و ترکیبات آب بندی بتن اثر بخش است است.تناوب پیاپی خشک و تر شدن سازه به تخریب سولفاتی سرعت می بخشد ،لذا کاهش و کم کردن نرخ تخریب را می توان با قطع این چرخه انجام داد.روش پیشنهادی دیگر از بین بردن سولفات های قابل انتقال از راه آب است در صورتی که دسترسی به منبع سولفاتی امکان پذیر باشد. در غیر این صورت پس از انجام بازبینی مناسب باید بتن موجود تخریب شده و با بتن ساخته شده با سیمان تیپ 5 جایگزین شود.

 

5 – واکنش قلیایی سنگدانه ها

 

انواع خاصی از شن و ماسه، مانند سنگ اوپال، چرت (نوعی سنگ آتشزنه با ذرات متراکم و سیاه )، سنگ چخماق یا آذرین با محتوای سیلیسی بالا، با کلسیم، سدیم ، پتاسیم و هیدروکسیدهای قلیایی سیمان پرتلند واکنش می دهند.این واکنش، علی رغم بیش از نیم قرن مطالعه و تحقیق اداره اصلاح از سال 1942 چندان درک و شناخته نشده است.برخی بتن های دارای سنگدانه هایی با قابلیت واکنش پذیری قلیایی، به سرعت شواهدی دال بر گسترش تخریب و فرسایش را نشان می دهد.اما بتنهای دیگرممکن است برای سالهای زیادی دست نخورده باقی بمانند.بررسی پتروگرافی در بتن های واکنش پذیر نشان می دهد که نوعی ژل در اطراف این نوع سنگدانه ها تشکیل شده است.

 

این ژل در حضور آب یا بخار آب (رطوبت نسبی 80 تا 85) ،به شدت گسترش پیدا کرده و ترک های کشیده ای در اطراف سنگدانه ها ایجاد کرده و در بتن گسترش می یابد (شکل 3).

 

و در صورتی که مهار نشود  ، این گسترش در داخل بتن برای اولین بار به صورت ترک خوردگی های منظمی بر روی سطح آشکار می گردد.معمولا، در برخی از موارد تراوش سفید رنگی در داخل و اطراف بتن ترک خورده مشاهده می شود.در موارد شدید، این ترک ها 5/1 تا 2 اینچ (شکل 4) باز می گردند.

 

 

بسیار معمول است که چنین آسیب های گسترده ای، منجر به چین خوردگی های(جابجایی های) قابل توجهی در بتن ویا قیود ونقاط اتصال بتنی دروازه های کنترل سدها گردد.در سازه های بتنی بزرگ، واکنش قلیایی سنگدانه ممکن است فقط در مناطق خاصی از سازه رخ می دهد.تا زمانی که استفاده از چندین معدن و دپوی سنگدانه برای استفاده در ساخت سازه های بتنی بزرگ معمول بوده ومورد تایید قرار می گیرد، این روش ممکن است برای تشخیص گیج کننده باشد.زیرا بتن حاوی شن و ماسه قلیایی یا سنگدانه واکنش پذیر، تنها در بخشهایی از سازه که نمایان ساخته شده است ، قابل تشخیص می باشد .همچین وضعیتی در حال حاضر در سد (Minidoka) استارک و DePuy 1995، سد کوه استوارت ، سد کولیج، سد Friant، و سد Seminoe قابل مشاهده است.

 

در سازه های جدید استفاده از سیمانهای پرتلند با خاصیت قلیایی پایین و سرباره پزولانی میتواند بطور کامل یا تا حد بسیار زیادی خوردگی در اثر واکنش سنگدانه ها را متوقف کند. در سازه های موجود خوردگی ناشی از مصالح سنگی واکنش پذیر تقریبا غیر قابل تعمیر است. هیچ روش اثبات شده ای برای حذف اثر واکنش های قلیایی سنگدانه ها وجود ندارد. اگرچه نرخ گسترش تخریب با اتخاذ تدابیری جهت خشک نگه داشتن سازه در بعضی موارد ممکن است کند شود. اما هر گونه تلاش برای تعمیر سازه هایی که تحت تاثیر واکنش های قلیایی هستند بی ثمر است.با گسترش مداوم این عارضه در داخل بتن هر گونه مواد تعمیری به سادگی جدا شده و بی اثر می شوند.سازه های تحت تخریب فعال باید به صورت مدام مونیتور شده و مورد بازرسی قرار گیرد، و تنها لازم است تعمیراتی را انجام داد که در جهت حفظ بهره برداری مطمئن سازه باشد.اتصالات بتنی گیت های در سد های متعددی با استفاده از سیم بکسل جهت ایجاد برش های ترمیمی در هر سطح بتنی آنها ، به چرخه بهره یرداری بازگردانده شده اند. سپس این برش ها با استفاده از تکنیک تزریق رزین پلی اورتان به جهت آبند کردن و متوقف ساختن نشت آب پر می شود.

 

با افزایش انبساط بتن، چنین برشهای آزادی منتاوبا تکرار شود.در بسیاری از سازه ها، جابجایی ها و انبساط ها کند شده و از بین می روند و میزان این کندی و توقف بسته به واکنش های قلیایی سنگدانه ها و ترکیبات قلیایی موجود در بتن است . فقط هنگامی می توان اصلاح و ترمیم را برای بهربرداری کامل انجام داد که انبساط سازه به صورت کامل انجام پذیرفته باشد.در هر صورت، باید این پیش بینی را داشت که در نهایت ممکن است نیاز به جایگزینی بتن تحت تاثیر خوردگی قلیایی وجود داشته باشد .چنین مورد جایگزین کردن بتن در سال 1975 در آمریکا ،در جریان بازسازی سد آیداهو فالز اتفاق افتاد.این سد در سال 1927 ساخته شد و پس از مطالعات گسترده توسط آزمایشگاه بتن دنور مشخص گردید که بتن سد در اثر واکنش قلیایی سنگدانه ها به شدت آسیب دیده است.

 

6 – تخریب ناشی از سیکل انجماد و ذوب

 

تخریب ناشی از یخ زدکی و ذوب مداوم آب درون بتن یکی از علت های شایع آسیب پذیری سازه های بتنی در اقلیم های سرد سیری است.شرایط زیر در رخ دادن صدمات ناشی از انجماد و ذوب موثر هستند :

 

1- سازه تحت تاثیر مداوم سیکل ذوب و انجماد باشد.

 

2- خلل و فرج بتن موجود در هنگام یخ زدگی از آب اشباع – بیش از 90 درصد- شده باشد.

 

آب در مدت زمان انجماد حدود 15 درصد انجماد حجمی را تجربه می کند .اگر خلل و فرج و حفرات مویینه در بتن تقریبا در طول انجماد اشباع شده باشند ،این انبساط سبب اعمال نیروهای کششی شده و منجر به شکستگی و ترک خوردگی ماتریس ملات سیمان می گردد.این تخریب تقریبا در تمامی لایه های بتن از سطوح خارجی به داخل رخ می دهد.

 

نرخ پیشرفت آسیب به تعداد چرخه های انجماد و ذوب ، درجه اشباع سازه در طول انجماد، تخلخل بتن، و شرایط قرار گرفتن در معرض تابش نور بستگی دارد.دیوارهایی که در معرض ذوب برف یا پاشش آب هستند ، دالهای افقی که در تماس با آب قراردارند و دیواره های عمودی که در مسیر عبور آب واقع هستند از جمله مکان های معمول برای آسیب در اثرانجماد و ذوب مداوم می باشند.اگر بتن در معرض تابش نور از سمت جنوب قرار گیرد ، روزانه یک نیم سیکل انجماد در شب و یک نیم سیکل ذوب را در روز تجربه می کند در مقابل، بتن ها با در معرض قرار گرفتن از سمت شمال ممکن است فقط یک چرخه انجماد و ذوب را درهر زمستان را پشت سر گذارده و در نتیجه وضعیت به مراتب کمتر مخربی را تجربه می کنند. شکل های 5 و 6 نمونه ای از این نوع تخریب را نشان می دهد.

 

 

 

 

 

 

 

شق دیگری از تخریب های ناشی از چرخه انجماد و ذوب به عنوان ترک "”D - D-cracking- (ترکهای دی شکل) شناخته شده است.در این مورد، گسترش تخریب در اثر کیفیت پایین ، جذب پذیری بالا ،و استفاده از سنگدانه های درشت درملات سیمان رخ می دهد .این نوع ترک خوردگی اغلب در گوشه ها و کنج هایی بدون حفاظ  دیوارها یا دالها و در محل اتصال ها دیده می شود. در چنین آسیبی مجموعه ای از ترک های تقریبا موازی که کلسیت (آهک) از درونشان بیرون میریزد (شوره می زند) معمولا سراسر گوشه و کنار سازه را قطع می کند. (شکل 7).

 

 

در سال 1942، دایره اصلاح ((Bureau of Reclamation صراحتا استفاده از مواد افزودنی هوا زا (AEA) در بتن ، به منظور کاهش تخریب سیکل ذوب و انجماد را آغاز نمود . سازه های بتنی ساخته شده قبل از این تاریخ فاقد هوازا بودند .سد Angostura، که در سال 1946عملیات ساخت آن آغاز گردید، اولین سد اصلاح شده با مشخصات مورد نیاز هوازا بر اساس قیمت سال 1981بود.

 

این نوع افزودنی ، تولید حباب های کوچکی از هوا درون جسم بتن نموده که فضای کافی جهت انبساط آب در هنگام یخ زدگی را فراهم می سازد.اگر هوازای مناسبی با غلظت صحیح درون بتن تازه ی با کیفیتی، بخوبی میکس و مخلوط شود، حاصل کار می بایستی صدمات بسیار کمی را در اثر سیکل ذوب و انجماد متحمل گردد، بجز در اقلیم هایی با آب و هوای بسیار بد.در نتیجه اگر در یک بتن جدید ، چرخه ذوب و انجماد به عنوان عامل آسیب مورد سوظن باشد ، ابتدا باید در این موضوع مورد بررسی قرار گیرد که چرا افزودنی هوا زا اثر بخش نبوده است.

 

بجز مواردی که بتن در معرض رطوبت و یا آب و هوای به شدت سرد قرار داشته باشد هنگامی که بتن تازه آسیب هایی از نوع چرخه ذوب و انجماد را ظاهر می سازد، به احتمال قوی دلایل دیگری وجود دارد .

 

(همانطور که گفته شد) تخریب ناشی از چرخه انجماد و ذوب بتن تنها زمانی رخ می دهد که بتن تقریبا اشباع شده باشد.بنابرین کاهش موفقیت آمیز صدمات ناشی از آن نیز،شامل کاهش یا حذف چرخه انجماد و ذوب و یا کاهش جذب آب توسط جسم بتن خواهد بود.معمولا هیچ روش شناخته شده ای برای محافظت و عایق بندی بتن برای کنترل دما جهت سیکل های انجماد و ذوب وجود ندارد ، اما می توان از ترکیبات آب بندی بتن برای جلوگیری یا کاهش جذب آب برای سطوح نمایان بتنی استفاده نمود.مواد آب بند برای بتن های غوطه ور در آب چندان اثر بخش نیست، اما می تواند از بتن هایی که در معرض باد و باران و آب شدن برف قرار دارند، محافظت نمایند.

 

ترمیم بتن آسیب دیده در اثر ذوب و یخ مدام ، اغلب به جایگزینی بتن ختم می شود. اگر ترک ها در حدود 6 اینچ و یا عمیقتر باشند باید از چسب اپوکسی به همراه بتن جدید استفاده کرد و یا از بتن پلیمری استفاده نمود . اگر صدمات بین 5/1 تا 6 اینچ عمق داشته باشد، حتما و مطمئنا در بتن جایگزین باید از مواد هوازا استفاده نمود. تلاش ها برای ترمیم خوردگی ها و تخریب های سطحی در اثر یخ زدگی و ذوب شدن متناوب، با عمق کمتر از 5/1 اینچ کاملا مایوس کننده بوده است. تا به امروز هیچ ماده تعمیری عمومی یا اختصاصی از سوی آزمایشگاه بتن دنور (ایالات متحده) ، مناسب ترمیم با این ضخامت شناخته نشده است.

 

7- تخریب در اثر سایش و فرسایش

 

سازه های بتنی که آب را به همراه گل و لای و ذرات معلق منتقل می کنند، شن ، خورده سنگ و یا آب با سرعت جریان بالا موضوعات مورد مطالعه در تخریب بتن در اثر سایش می باشند. حوضچه های آرامش در سد ها در صورتی که ذرات موجود در کف آنها جارو و منتقل نشود در معرض سایش قرار خواهند گرفت. در برخی از حوضچه های آرامش به علت معیوب بودن الگوی جریان ، سنگریزه ها و ذرات از پایین دست به بالا دست حوضچه کشیده می شود.در محلهایی که این ذرات درون حوضچه جمع میشوند ، در زمانی که جریانهای شدید وجود دارد، تخریب های قابل توجهی بوجود می آید.(شکل 8).

 

 این سایش در اثر کوبش شن و خورده سنگ ها و گل و لای به کف اتفاق می افتد. آسیب ناشی از این تخریب به صورت صیقلی شدن سطح بتن ظاهر می شود. (شکل 9).

 

 

سنگدانه های درشت بتن نمایان شده و قدری از آنها تحت اثر گل و لای و شن، جلا خورده اند. شکل 10 مراحل اولیه سایش و احتمالا شروع خوردگی در دیوارهای حوضچه آرامش را نشان می دهد.

 

 

میزان تخریب سایش و خوردگی تابعی از متغیرهای زیاد و همچنین مدت زمان قرار گرفتن (سازه) در معرض این مولفه هاست، شکل سطوح بتنی، سرعت و الگوی جریان، مسیر جریان، و مجموع بارگذاری امکان دستیابی به نظریه ای عمومی برای پیش بینی رفتار بتن در این شرایط را بسیار دشوار ساخته است. در نتیجه، معمولا لازم است مدل هیدرولیکی سازه برای تشخیص شرایط و الگوی جریان در حوضچه های آسیب دیده و ارزیابی تغییرات مورد نیاز مورد مطالعه قرار گیرد.اگر تمامی شرایطی که منجر به سایش و فرسایش سازه میگردد مورد بررسی قرار نگیرد، بهترین مواد تعمیری هم کارایی نداشته و عمر بهره وری سازه پایین خواهد آمد.

 

به طور کلی این درک وجود دارد که بتن با کیفیت بالا به مراتب مقاوم تر از بتن با کیفیت پایین در مقابله با آسیب ناشی از سایش است . تعدادی از مطالعات انجام شده ( Smoak)، 1991 به وضوح نشان می دهد که مقاومت بتن در برابر سائیدگی با افزایش مقاومت فشاری بتن را افزایش می یابد.

 

بهترین ترمیم آسیب های ناشی از سایش استفاده از بتن با دوده سیلیسی و یا استفاده از بتن پلیمری است.این مواد بالاترین مقاومت در برابر تخریب را در تست های آزمایشگاهی و میدانی نشان داده اند. اگر تخریب تا پشت شبکه آرماتور بندی نفوذ نکرده و حداقل 6 اینچ در جسم بتن نفوذ کرده باشد، باید بتن جدید میکس شده با پودر میکروسیلیس روی یک لایه چسب اپوکسی تازه اجرا شود. شکل 11 نحوه ی اجرای بتن با پودر میکروسیلیس جهت ترمیم خرابی های ناشی از سایش، فرسایش و چرخه ی انجماد و ذوب را بر روی کف سرریز سد Vallecito نشان می دهد.

 

 

- آسیب های ناشی از پدیده کاویتاسیون

 

تخریب در اثر کاویتاسیون زمانی اتفاق می افتد که جریان آب با سرعت بالا به صورت نامنظم و ناپیوسته به سطح جریان برخورد کند. ناپیوستگی در مسیر جریان باعث می شود آب سطح جریان را بالا بکشد ، در نتیجه باعث ایجاد مناطق فشار منفی شده و حباب هایی از بخار آب ایجاد گردد. این حباب ها به پایین دست جریان حرکت کرده و می ترکند. اگر ترکیدگی حباب ها مجاور یک سطح بتنی صورت بگیرد، یک ناحیه ی ضربه ای فشار بالا گرداگرد یک منطقه بی نهایت کوچک در روی سطح ایجاد می شود. چنین ضربات قدرتمندی می تواند ذرات بتن را جابجا و قلوه کن کرده ، باعث تشکیل ناپیوستگی دیگری شود که خود آن می تواند باعث آسیب گسترده تری در اثر پدیده کاویتاسیون گردد. شکل 12، الگوی کلاسیک "درخت کریسمس" –تخریب در اثر کاویتاسیون به شکل کاج کریسمس- در یک تونل انتقال بتنی بزرگ در سد گلن کانیون که از سال 1982 جریانی بوده ،رخ داده است ،را نشان می دهد.

 

 

 

 

در این نمونه، تخریب کاویتاسیون به طور کامل در طول تونل بتن گسترش یافته و حدود 40 فوت به اساس صخره (شکل 13) نیز نفوذ کرده است.

 

 

تخریب در اثر کاویتاسیون در درون ، اطراف و چهارچوبه در های کنترل آب معمول است.جریان سرعت بسیار بالا هنگامی رخ می دهد که گیت های کنترل آب برای اولین بار باز می شوند ویا به مقدار کوچکی باز می مانند.این جریان باعث تخریب از نوع کاویتاسیون در پایین دست گیت ها یا اطراف آن می گردد.

 

برای ایجاد مقاومت در برابر پدیده کاویتاسیون بسیاری از مواد مختلفی توسط آزمایشگاه های اصلاح و ترمیم، رسته ی مهندسی ارتش ایالات متحده، و دیگران تست شده است. تا به امروز، هیچ ماده ای، از جمله فولاد ضد زنگ و چدن، قادر به تحمل کامل اثر های تخریبی ایجاده شده توسط کاویتاسیون نیست.برای داشتن تعمیرات موفق باید علل ایجاد کاویتاسیون را در نظر گرفت.

 

قانون استاندارد انگشت شست (rule of thumb) بیان می کند که کاویتاسیون در جریان هایی با سرعت کمتر از حدود 40 فوت در ثانیه در فشار محیط رخ نمی دهد. در باره ی سرعت جریانهایی تا به این اندازه نزدیک به آستانه (40 فوت بر ثانیه)، لازم است اطمینان حاصل شود که هیچ ناهمواری و یا ناپیوستگی در سطوح مسیر جریان وجود ندارد.

 

جزئیات و مشخصات ترمیم نهایی بر روی سطح سازه های بتنی که جریان هایی با سرعت بالا را تجربه خواهند کرد، باید بسیار سفت وسخت وبدون اغماض صورت پذیرند.

 

تعمیرات بتن تازه توانایی پاسخگویی به این نیاز شرایط سازه را نداشته باشد گاهی اوقات می تواند به صورت سنگ زنی وساب زنی سطح و برداشتن ناهمواری ها انجام می شود.هرچند، به احتمال زیاد بتنی است که مشخصات سطحی مورد نظر را برآورده نمی کند باید برداشته شود و با بتن جدید جایگزین شود و یا بتن جایگزین بتن به همراه چسب اپوکسی استفاده می شود.

 

خسارت وارد شده در اثر کاویتاسیون به چهارچوب یا خود گیت های کنترل معمولا می تواند با استفاده از ملات اپوکسی و چسب پیوندی اپوکسی ، ویا بتن پلیمری ، و یا جایگزینی بتن به همراه چسب اپوکسی تعمیر شود.طبیعت چنین آسیب هایی معمولا بسیار گسترده نیست.در نتیجه کشف و شناسایی آنها قبل از انجام تعمیرات بزرگ بسیار ضروری است.پس از انجام این تعمیرات، ایده خوبی است که یک لایه پوشش یکپارچه اپوکسی روی بتن ، از ابتدای چهارچوب گیت به سمت پایین دست به طول 5 تا 10 فوت اعمال کرد ،.سطح صیقل و شیشه ای پوشش اپوکسی ممکن است به جلوگیری از اثرات مخرب کاویتاسیون بر بتن کمک کنداما .به هر حال باید توجه داشت، که پوشش های اپوکسی به طور کامل در برابر آسیب های ناشی از کاویتاسیون مقاوم نیست.

 

برای داشتن یک تعمیر موفقیت آمیز در سرریزها، دریچه های خروجی ، یا حوضه های آرامش بتنی در سد ها تقریبا همیشه نیاز به ایجاد تغییرات عمده در ساختاربخش آسیب دیده به منظورجلوگیری از بازگشت تخریب وجود دارد.نتایج و عملکرد روش ها در مطالعات مدل هیدرولیک برای اطمینان از صحت طراحی چنین تعمیراتی باید در نظر گرفته شوند.یکی از روش های اصلاحی، نصب و راه اندازی شیار های (slot) هوا در سر ریز ها و تونل هاست، که در از بین بردن و یا کاهش قابل توجه اثر کاویتاسیون بسیار موفق بوده است.بتن جایگزین معمولا در این نوع عارضه ها و تعمیرات اینچنینی کاربرد بسیار دارد.

 

9- خوردگی شبکه آرماتور

 

خوردگی شبکه آرماتور معمولا نشانه ی بر تخریب بتن به علت دیگریست، در این مورد، علل مخرب دیگر بتن را ضعیف کرده و اجازه می دهند تا خوردگی شبکه آرماتور رخ بدهد.به هر صورت ، شبکه های آرماتور دارای خوردگی به صورت متداول در هر بتن آسیب دیده ای یافت می شوند لذا با توجه به اهداف این کتاب بنا داریم در این مبحث ،علل خوردگی آرماتور ها را مورد مطالعه قرار دهیم.

 

ظرفیت قلیایی سیمان پرتلند مورد استفاده در بتن به طور معمول در اطراف آرماتورها ، ایجاد یک محیط بازی (قلیایی) غیر فعال (در حدود PH12 ) کرده که از آنها در برابر خوردگی محافظت می کند. وقتی که انفعال محیطی از دست رفته و یا از بین برود، و یا زمانی که بتن دچارترک خوردگی شود و یا تورق به اندازه کافی اجازه می دهد تا آب بدون مزاحمت وارد بتن شود، خوردگی رخ می دهد. اکسیدهای آهن تشکیل شده در طول خوردگی فولاد نیاز به فضای بیشتری نسبت به سایز اصلی شبکه آرماتور در بتن دارند. این مسأله باعث بوجود آمدن تنش کششی در بتن و در نتیجه ایجاد ترک های اضافی و (یا )لایه لایه شدن کاور بتن و در نتیجه سرعت بخشیدن به روند خوردگی خواهد شد.

 

برخی از علل شایع تر از خوردگی فولاد همراه شدن ترک خوردگی های بتن با سیکل انجماد و ذوب شدن، قرار گرفتن در معرض سولفات، و واکنش قلیایی سنگدانه ها، قرار گرفتن در معرض اسید، از دست دادن خواص قلیایی به علت کربناته، فقدان ضخامت کافی کاور بتن، و قرار گرفتن در معرض کلرید هاست.

 

قرار گرفتن در معرض کلرید ها تا حد زیادی نرخ خوردگی سرعت بخشیده و می تواند به فرمهای متعددی رخ می دهد.استفاده از نمک ضد یخ(کلرید سدیم) به بتن برای سرعت بخشیدن به روند آب شدن برف و یخ، منبع معمول برای کلریدها است.کلریدها همچنین می توانند در شن و ماسه، سنگدانه ها، و آب مورد استفاده برای آماده سازی مخلوط های بتن وجود داشته باشند.بعضی از سازه های آبیاری در ایالت های غربی آمریکا ، آب با محتویات کلرید بالا را منتقل و جابجا می کنند(شکل 14).

 

 

سازه های بتنی واقع در محیطهای دریایی قرار گرفتن در معرض کلراید را از طریق آب دریا و یا پاشش در اثرجریان باد تجربه می کنند.

 

در نهایت یکی دیگر (از راههای حمله ی کلرها) روش تجربی استفاده از کلراید به عنوان مواد افزودنی بتن برای سرعت بخشیدن به هیدراتاسیون در زمستان (به عنوان ضد یخ) بود.

 

رخ دادن زنگ زدگی در شبکه آرماتور می تواند معمول باشد ، اما نه همیشه ، این مسئله را می توان با آشکار شدن لکه زنگ بر روی سطوح خارجی بتن و یا تولید صدای توخالی و یا طبل مانند و بمی که ناشی از ضربه زدن نرم روی بتن مشکوک ایجاد می شود ، شناسایی کرد.همچنین می توان با اندازه گیری پتانسیل خوردگی هافسل از بتن آسیب دیده، با استفاده از دستگاه های الکترونیکی ویژه، که به این منظور ساخته شده، زنگ زدگی را شناسایی نمود.زمانی که زنگ زدگی شبکه آرماتور تایید شد، بسیارمهم است که آنچه واقعا باعث خوردگی شده شناسایی شود، چون معمولا علل خوردگی تعیین خواهد کرد که چه روش تعمیراتی را باید مد نظر و مورد استفاده قرار داد.بحث بیشتر درمورد روش های ترمیمی مناسب ،در بخش های دیگری از کتاب آورده شده است.هنگامی که علت آسیب شناسایی شد و مسئله ساده تر گردید ، در صورت لزوم، حفاظت و آماده سازی شبکه آرماتور تحت اثر خوردگی درهنگام برداشتن بتن فرسوده اهمیت می یابد. بر این اساس فلزی که توسط فرآیند خوردگی به کمتر از نصف سطح مقطع اصلی آن کاهش یافته باید حذف شده و جایگزین گردد.فولاد باقی مانده نیز برای حذف تمام شل زنگ ها ، خورده زنگ ها و محصولات جانبی خوردگی که با اتصال به مواد تعمیری (در روند ترمیم) دخالت می کنند ، باید تمیز گردد. شبکه آرماتور بندی تحت خوردگی ممکن است است از مناطق دارای بتن آسیب دیده به سوی بتن به ظاهر خوب گسترش یافته باشد. بنابرین در هنگام برداشتن بتن باید دقت کرد تمامی شبکه آرماتور دارای خوردگی شناسایی شوند.

 

10- قرار گرفتن در معرض اسید

 

منابع شایع برای قرار گرفتن سازه های بتنی در معرض اسید در مجاورت معادن زیر زمینی اتفاق می افتد. آب های زهکشی خارج شده از این معادن می تواند اسیدی و به صورت غیر منتظره ای با PHپایین باشد.مقدار PH 7 به عنوان ماده خنثی تعریف شده است. مقادیر بالاتر از 7 قلیایی نامیده شده اند، در حالی که مقادیر PH پایین تر از 7 اسیدی هستند. محلول اسید سولفوریک 15 تا 20 درصد،مقدار PH در حدود 1 می تواند داشته باشد.

 

چنین محلولی به سرعت به بتن آسیب می زند.پسآبهای اسیدی با مقدار PH بین 5تا 6 نیز به بتن صدمه میزنند، اما تنها پس از قرار گرفتن طولانی سازه در معرض آنها.

 

تشخیص بتن آسیب دیده توسط اسید بسیار آسان است.اسید با سیمان پرتلندِ ملات بتن واکنش می دهد و سیمان به نمک های کلسیم تبدیل شده که بوسیله آب جاری ریزش کرده و شسته می شوند.سنگدانه ها ی درشت تر معمولا سالم می مانند، اما نمایان می گردند. ظاهر بتن آسیب دیده توسط اسید تا حدودی مانند تخریب سایشی است، اما سنگدانه هایی که در معرض اسید قرار می گیرند نمایانتر و بدون صیقل هستند. شکل 15 و 16 ظاهر نمونه ای از بتن را نشان می دهند که با قرار گرفتن در معرض اسید آسیب دیده است.

 

 

 

تخریب اسیدی به وضوح در سطح آغاز می شود، و تحت تاثیر اسید گسترش می یابد ، از آن طرف هرچه به هسته اصلی سازه و عمق بتن نزدیک می شود میزان تخریب کاهش می یابد. غلظت اسید در سطح بتن بالاست.اما هرچه به داخل بتن نفوذ می کند به علت واکنش با سیمان پرتلند خنثی می گردد. با این حال، سیمان موجود در جسم بتن به علت این واکنش ها ضعیف شده است.

 

بنابراین اقدامات اولیه برای ترمیم بتن تحت اثر اسید، که شامل برداشتن بتن آسیب دیده است همواره بیش از آن چیزیست که پیش بینی می شود.عدم حذف تمامی بتن های آسیب دیده و ضعیف شده ناشی از عملکرد اسید باعث نقص در چسبیدن مواد ترمیمی می شود.بر اساس تجربه شستشو با اسید به عنوان یک روش مجاز برای تمیز کردن بتن جهت آمادگی سطوح برای تعمیرات مجاز می باشد ، اما به هر صورت، نقص در چسبیدن مواد تعمیری رخ می دهد، مگر آنکه تلاش های گسترده ای برای حذف تمام آثار اسید از بتن انجام پذیرد.

 

در روش های دیگر ترمیم بتن هیچ مجوزی جهت استفاده از اسید برای آماده سازی سازی بتن قبل از تعمیر و یا برای تمیز کردن ترک ها به منظور تزریق رزین صادر نشده است.

 

همانند تمامی علل تخریب بتن ، حذف منع تخریب بتن پیش از ترمیم لازم و ضروریست. یکی از روشهای معمول در تخریبات اسیدی، رقیق کردن اسید موجود در محل به وسیله آب است. محلول اسیدی با PH پایین می تواند تبدیل به محلول اسیدی با PH بالاتر شده که پتانسیل رفتار مخرب کمتری دارد.

 

به عنوان جایگزین اگر PH محلول اسیدی به طور متوسط بالا بود، می توان از سیستم پوشش نازک بتن پلیمری  به عنوان متوقف کننده بازتولید اثرات تخریبی اسید پس از انجام ترمیم بر روی سطح استفاده نمود.

 

تحقیقات آزمایشگاهی نشان می دهد پوشش هایی با قابلیت محافظت سطح بتن در برابر اسید های قوی ، به ندرت اقتصادی هستند.

 

در تعمیرات تخریب اسیدی می توان از بتن جایگزین به همراه چسب اپوکسی بتن جایگزین و بتن پلیمری و در بعضی موارد از چسب اپوکسی به همراه ملات اپوکسی استفاده نمود. پیشنهاد می شود از ملات اپوکسی و بتن پلیمری که حاوی سیمان پرتلند نباشند، به دلیل مقاومت زیادی که در برابر اسید ، استفاده گردد.

 

11 – ترک خوردگی

 

ترک مثل خوردگی آرماتورها دلیل اصلی تخریب بتن نیست. بلکه نشانه ای از تخریب بتن به علت سایر عوامل مخرب است.

 

همه بتن هایی که با سیمان پرتلند ساخته می شوند درجه ای از جمع شدگی را در هنگام هیدراتاسیون متحمل می شوند. این انقباض جمع شدگی های خشکی را تولید کرده و ترک های ناشی از جمع شدگی را پدید می آورد که تا حدی به الگوی دایره ای شبیه هستند (شکل 17) .

 

 

 

 

این ترک ها به ندرت به عمق بتن گسترش یافته و می توانند به طور کلی نادیده گرفته می شوند.

 

ترکهای جمع شدگی پلاستیک، زمانی رخ می دهند که بتن تازه در معرض تبخیر زیاد آب خود را از دست می دهد ، که این در زمانیست که بتن وضعیت خمیری دارد.(شکل 18)

 

 

ترک های جمع شدگی پلاستیک معمولا تا حدی عمیق تر از ترکهای خشک و ترکهای ناشی از جمع شدگی در حین کیورینک بتن می باشند.

 

ترکهای گرمایی در اثر انقباض و انبساط بتن در اثر تغییر دمای محیط بوجود می آیند. ضریب طولی انبساط گرمایی بتن در حدود 5/5 میلیونیم اینچ بر اینچ بر درجه فارنهایت است. این می تواند باعث شود تا بتن به اندازه 5 درصد یک فوت به ازای هر 80 درجه فارنهایت تغییر طولی داشته باشد.

 

اگر هنگام طراحی به اندازه ی کافی درز برای وفق دادن بتن با این تغیر اندازه در سازه های بتنی تعبیه نشده باشد، بتن به سادگی از محلهایی که لازم بود درز انبساطی لحاظ شود ترک می خورد. این نوع ترک ها عموما بصورت کامل در درون جسم بتن گسترش یافته و منبعی برای نشت آب به درون سازه ی بتنی ایجاد می کنند. ترک های حرارتی همچنین می توانند در اثر دمای بالای هیدراتاسیون سیمان پرتلند در هنگام کیورینگ ایجاد شوند. در چنین بتن هایی مادامی که افزایش حرارت وجود دارد ، دمای داخلی و سختی افزایش می یابد. انقباض ثانویه نیز زمانی رخ می دهد که سازه رو به سرد شدن رفته و در اثر تنش کششی داخلی در سراسر نقاط تکیه گاهی ترک ایجاد می گردد.

 

کمبود نقاط تکیه گاهی یکی دیگر از علل شایع ترک خوردگی در سازه های بتنی است. تنش کششی بتن معمولا بین 200 تا 300 psi است. پی موجود سازه به راحتی می تواند شرایط جابجایی را هرجا که تنش کششی از این میزان تجاوز کرده به وجود آورد و در نتیجه منجر به ایجاد ترک گردد.

 

ترک های بتن همانگونه که در بخشهای پیش مورد بحث قرار گرفت ،در اثر واکنش سنگدانه های قلیایی بتن ، حمله سولفاتی و تاثیرات سیکل ذوب و انجماد نیز ایجاد میشوند. این ترک ها در سازه در اثر بارگزاری بیش از حد سازه نیز اتفاق می افتند که در بخش آینده به آن خواهیم پرداخت.

 

تعمیرات موفق بر روی ترکهای سازه ی بتنی اغلب به سختی حاصل می گردد. گاهی بهتر است به برخی از انواع ترک های بتن نپرداخت تا با روش اشتباه و پر نقص دست به تعمیرشان زد. (شکل 19 و20)

 

 

 

 

 

انتخاب روش ترمیمی برای ترک ها به علل پیدایش آنان بستگی دارد. ابتدا باید تعیین کرد که ترکها زنده هستند یا مرده ، به صورت گردشی باز و بسته هستند یا گسترش یابنده با دامنه ی وسیع . تعمیرات سازه ای در این نوع معمولا بسار پیچیده و اغلب بی اثر هستند. چنین ترک هایی به سهولت و به سرعت بر روی مواد تعمیری یا در مجاورت بتن تعمیری باز تولید می شوند. به همین دلیل و پیش از هر تلاشی برای تعمیر بتن لازم است تا " ترک سنجی" به منظور مونیتور و نظارت بر روی ترک های سازه نصب شود. (شکل 21)

 

 

این ابزار باید اطلاعاتی در مورد نوع ترک ، باز و بسته شدن دوره ای ، و اینکه سیکل آن روزانه یا فصلی است و اینکه به علت تغییرات دمایی هست یا نیست و یا اینکه ترک از نوع پیشرونده و وسیع شونده است و به علت شرایط فونداسیون و یا بارگزاری است. مجددا اشاره می شود هر تلاشی برای تعمیر تنها هنگامی باید صورت گیرد که علل رفتار ترکها شناسایی شده باشد.

 

اگر تشخیص داده شد ترک اصطلاحا "مرده" یا به عبارتی ایستا است، تزریق رزین اپوکسی می تواند برای یکپارچه ساختن سازه ای بتن استفاده شود. و اگر هدف از ترمیم ، آب بند ساختن نشتی سازه است پیشنهاد می شود که ترمیم به صورت کامل با تزریق رزین پلی یورتان انجام پذیرد.

 

تزریق رزین اپوکسی در برخی موارد که حجم نشت آب سازه کم باشد ، برای آب بندی استفاده شده و یا جهت چسباندن مجدد ترک های اعضای سازه ی بتنی بکار می رود.

 

رزین اپوکسی پس از تزریق به ماده ای سخت اما شکننده و ترد که نسبت به حرکت احتمالی ترک ها مقاومتی ندارد بدل می شود ، در عوض رزین پلی یورتان انعطاف پذیر بوده و مقاومت کششی پایینی داشته و به فومی بدون منفذ بدل شده که برای رفع نشت و آببندی سازه های بتنی اثر بخش است اما نمی توان به صورت نرمال برای تعمیرات اساسی از آن استفاده نمود.( برخی رزین های دو جزئی پلی یورتان وجود دارند که پس از تزریق صلب و انعطاف پذیر شده و برای این گونه تعمیرات مفید خواهد بود).

 

این گونه فوم های انعطاف پذیر می توانند 300 تا 400 درصد ازدیاد طول در اثر حرکات ترک ها را تجربه کنند. این نامتداول نیست که بتن آسیب دیده ای یافت شود که ترک های آن در اثر علل اولیه آسیب بتن ایجاد نشده باشد.(بخش 13 را ببینید).

 

اگر عمق برداشت بتن آسیب دیده و فرسوده به اندازه ی مورد لازم زیر عمق و دامنه ی گسترش ترکهای موجود نباشد، باید انتظار داشت سرانجام ترک جدیدی از میان مواد تعمیری استفاده شده نمایان شود.چنین بازتولید ترک ها را می توان در پوشش های ترمیمی پیوندی در عرشه ی پل ها ، سرریز ها و کانال های آب می توان مشاهده کرد ( شکل 22)

 

 

 

 

اگر ترک های مجدد تحمل ناپذیر باشند باید روش تعمیر جداگانه ای برای هر یک از اجزای سازه و نه بر اساس اتصال به بتن قدیمی موجود در نظر گرفت.

 

12- بارگذاری بیش از حد بر روی سازه

 

تخریب بتن در اثر بارگزاری بیش از حد معمولا بسیار واضح است و به سادگی قابل شناسایی ست. رویداد هایی که در اثر بارگزاری بیش از ظرفیت سازه بوجود می آیند قابل توجه و قابل ذکر اند. تنش تولید شده در اثر بارگزاری زیاد به بروز ترک های متمایزی منجر شده که بارگزاری بیش از حد و نقاط باربر را نمایان می کنند. غالبا بارگزاری بیش از حد یکبار اتفاق می افتد و یک بار هم اثرات آن مشخص می شود و لذا در صورت ترمیم می توان انتظار داشت آثار تخریب بتن مجددا بر روی بتن تعمیری عود نکند.

 

باید انتظار داشت در چنین آسیب هایی به دانش و کمک یک مهندس سازه ی باتجربه، برای انجام تجزیه و تحلیل ساختاری برای مشخص ساختن و ارزیابی علل منجر به تخریب سازه در اثر بارگزاری بیش از ظرفیت بطور کامل ، و نیز کمک برای تعیین میزان ترمیم و تعمیر ات لازم ، نیاز خواهد بود. این آنالیز باید تعیین میزان بارپذیری سازه در هنگام طراحی و تعیین اندازه ظرفیت طراحی شده برای بارگزاری بیش از حد را شامل شود. از ابتدا تا انتهای بازبینی بتن آسیب دیده باید تمامی اثرات بارگزاری بر روی سازه مشخص شود. جابجایی ها باید مشخص شوند و در درجه ی دوم خرابی ها ، در هر جایی که باشند. باید توجه داشت که اطمینان حاصل شود که خرابی هایی شناسایی شوند که ظرفیت بار پذیری سازه را پایین می آورند چون برخی از آسیبها برای اولین بار بتن را تضعیف نمی کند. ترمیم بتن آسیب دیده در اثر بارگزاری زیاد، میتواند به احتمال فراوان، بهترین عملکرد را با بتن جایگزین متداول داشته باشد. در صورت نیاز به تعمیر یا جایگزینی شبکه ی آرماتور بتن آسیب دیده می بایست این عملیات در پروسه تعمیراتی پیش بینی و تعبیه گردد.

 

13- دلایل مضاعف تخریب

 

علت آسیب می بایست مشکوک باشد هنگامی که فرسودگی یا خسارتی در «بتن مدرن» رخ می دهد. بتن مدرن ( بتنی که از حوالی سال 1950 میلادی ساخته شده است) این مزیت را دارد که از افزودنی های گوناگون و تکنولوژی پیشرفته مواد بتنی برخوردار است.چنین بتنی نباید به بسیاری از دلایلی که در این فصل بررسی نموده ایم تخریب گردد. اگر به هر طریق مشخصات آسیب یا فرسودگی در این بتن نمایان گشت به احتمال فراوان مجموعه ای از دلایل موجبات آنرا فراهم نموده اند. ضعف در شناخت یا تقلیل دادن علل گوناگون آسیب به طور حتم سبب تعمیر ضعیف و عدم بهره برداری مناسب می گردد. تصویر 23 آسیب بتن در اثر چند عامل مخرب را نشان می دهد.

 

 

 

 

 

 

این بتن از ترکهای ناشی از واکنش قلیایی سنگدانه ها رنج می برد ، همچنین فرسایش ناشی از تسریع فرآیند چرخه ذوب و انجماد در سطح آن رخ داده است. همینطور صدمات ناشی از طراحی نادرست و یا ضعف در تکنیک های ساخت، در محل تعبیه شده برای داکت تاسیسات برقی که بسیار نزدیک به سطح خارجی بتن می باشد، مشهود است.

 

استفاده مناسب از افزودنی هوازا در بتن مدرن ، در حد بالایی مقاومت بتن در برابر فرسایش ناشی از سیکل ذوب و انجماد را توسعه داده است. بجز در مواردی که بتن در معرض سرمای بسیار شدید غیر معمول قرار می گیرد، نباید نشانه هایی از آسیب مربوط به سیکل ذوب و انجماد بروز یابد. علی رغم این ، سیکل انجماد و ذوب هم چنان یکی از مقصران آسیب به بتن های مدرن می باشد. قبل از اینکه شرایط ذوب و انجماد را متهم کنیم بهتر است این سئوال را مطرح کنیم که چرا افزودنی هوازا محافظت موثری را از بتن فراهم نکرده است؟ طرح اختلاط ویا نتایج تست کیفیت سنگدانه ها ممکن است ضعف بتن آماده شده را آشکار سازد. یا سنگدانه های در دسترس از کیفیت مرغوبی برخوردار نباشند. گزارشات ناظران ساخت و ساز ممکن است مشخص سازد در وهله ساخت تا اتمام آن ضعف در اجرا وجود داشته است.

 

تست های پتروگرافی بتن ضعیف ممکن است آشکار سازد ، واکنش قلیایی سنگدانه های بتن ، حمله سولفات ها و تاثیر کلروها بتن را در شرایطی قرار داده تا اجازه دهد آسیب های ناشی از چرخه انجماد – ذوب بروز نماید.

 

تمام این یافته ها آشکار می سازد که مشکل ایجاد شده بسیار پر دامنه تر و وسیعتر از تصور اولیه است و لذا نیازمند عملیات پیشگیرانه و صحیح گسترده تر از یک جایجایی ساده بتن فرسوده فعلی می باشد.

 

استفاده بیش از حد از آب در اختلاط بتن ، انتخاب نامناسب نوع سیمان پرتلند، عملکرد ضعیف در اجرا، بتن آماده ی ضعیف ، استفاده از سنگدانه های آلوده و کم کیفیت و کیورینگ ناکافی، تماما به بتن دوام پایینی می بخشند. چنین بتنی در برابر فرسایش نرمال و سایر پیشامد ها مقاومت پایینی خواهد داشت.

 

انتخاب روش و مواد مناسب برای بتن آسیب دیده ای که تحت تاثیر عوامل مختلف تخریب قرار داشته، بستگی به تمامی عوامل تضعیف کننده و تسریع کننده تخریب دارد. هرگاه عامل تضعیف کننده به صورت کامل درک شد، اولین اقدام پیشگیرانه معمول محافظت از بتن اصلی از تخریبات اضافی است. استفاده از ترکیبات بتن آببند یا پوشش نازک بتن پلیمری ممکن است در این باره مفید باشد. اگر این راهکارهای پیشگیرانه در مقام داوری مفید نبود می بایست بر اساس شروحی که در بخش های قبلی آمد روش ترمیم را با در نظر داشتن دوره عمر کوتاه ترمیم و بازگشت مجدد آسیب ها بر بتن ضعیف انتخاب و اجرا نمود.

 

 بر اساس نظر مترجم محترم استفاده و اشتراک گذاری این مطلب با اشاره به نام منبع ( کلینیک بتن ایران )مجاز می باشد.














سوپر فوق روان کننده نسل جدید بتن ،روان کننده ها ی بتن، ابر روان کننده بتن بر پایه پلی کربوکسیلاتی، فوق روان کننده بتن بر پایه نفتالین، فوق روان کننده بتن کربکسیلاتی،فوق روان کننده نفتالینی،روان کننده کربکسیلاتی، فوق روان کننده بتن، فوق روان کننده نرمال بتن،فوق روان کنننده زودگیر بتن،فوق روان کننده دیرگیر بتن،فوق روان کننده آببند بتن،فوق روان کننده آب بند بتن،روانساز بتون،ابر روان کننده بتن،روان کننده نرمال بتن،روان کننده کندگیر بتن،روان کننده آببند بتن،رزین سنگ مصنوعی،رزین سمنت پلاست،گروت،گروت آماده مصرف،گروت کیسه 25 کیلوگرمی،گروت اپوکسی،گروت اپوکسی 3جزئی،گروت خودتراز شونده،گروت ساختمانی،گروت منبسط شونده،گروت کامبکس،گروت کانراکبکس،ملات تعمیراتی اپوکسی، ملات تعمیراتی سیمانی،ملات ترمیمی اپوکسی،مکمل بتن،مکمل بتن الیاف دار،مکمل بتن با خاصیت زودگیری،مکمل بتن با خاصیت آببندی،مکمل بتن با خاصیت دیرگیر،ضد یخ بتن فاقد یون کلر،میکروسیلیس،ژل میکروسیلیس،پودر میکروسیلیکا،ژل سیلیکافیومی با خاصیت زودگیری،ژل سیلیکافیومی با خاصیت دیرگیری،ژل سیلیکافیومی با خاصیت آب بندی،ژل سیلیکافیومی الیاف دار،دیرگیر بتن،زودگیر بتون،پودر شاتکریت،ماستیک گرم ریز،ماستیک سرد ریز،ماسیتک پلی یورتان،ماستیک درزبندی،ماستیک آب بندی،ماستیک درز،پرایمر،پرایمر بتن،چسب بتن،چسب اپوکسی،چسب کاشی خمیری،چسب سرامیک پودری،چسب کاشی پودری،خمیر کاشت آرماتور،ملات خودتراز شونده بتن،کیورینگ بتن،ماده عمل آوری سطح بتن،ترمیم کننده بتن،رنگ اپوکسی،کوتینگ بتن،روغن قالب بتن،عایق امولسیونی بتن،عایق قیری بتن،عایق پلیمری،اسپیسر پلاستیکی،ضد آب کننده کریستالی بتن ،مواد آب بندی بتن،الیاف روپیلن،الیاف پی پی،الیاف pp،نفوذگر بتن،واتر پروف مایع بتن،واتراستاپ، واتراستاپ بنتونیتی، واتراستاپ هیدروفیلی،واتر پروف پودری بتن،محافظ نما،هاردملات بتن،سخت کننده کف بتنی،انواع چسب کاشت بولت و کاشت آرماتور،پودر لیگنو سولفونات کلسیم،پلی کربوکسیلات،خمیر پوزولان.کلینیک بتن ایران عرضه کننده مواد ژئوسنتتیک،ژئوتکستایل،ژئوممبراین،ژئونت،تکستایل،ژئوگرید و لوازم قالب بندی،پین و گوه قالب،قالب فلزی،مهره خوروسکی،سلجر،پشت گیر قالب،بولت آب بند،بولت رزوه،میان بولت آب بند،سر شمع و سر جک،پله پی وی سی ،پله pvc.



مهندسی و اجرای ترمیم سازه های بتنی، مهندسی و اجرای طرح حفاظت از سازه های بتنی و فولادی، مهندسی و اجرای کف پوشهای صنعتی مقاوم بتنی، اجرای کف پوشهای صنعتی مقاوم اپوکسی، اجرای کف پوشهای صنعتی مقاوم رزینی ، اجرای کف پوش اپوکسی،اجرای کف پوش رزینی ، اجرای کف پوش بتنی ، اجرای کف پوش انبارها ، اجرای کف پوش فرودگاه ها ، اجرای کف پوش تعمیرگاه ها و اجرای کف پوش سالن های ورزشی، مقاوم سازی سازه های بتنی به روش FRP و ...، مشاوره ؛ارائه طرح و اجرای آب بندی سازه های بتنی، پیمانکار آب بندی بتن، آب بندی مخازن بتنی ، آب بندی کلاریفایر ، آب بندی استخر ، آب بندی سازه های بتنی حجیم ، مشاوره و اجرای کاشت آرماتور ، بولت و کرگیری در بتن مسلح ، مجری آب بندی سازه های بتنی ، اجرا کننده ترمیم و آب بندی سازه های بتنی.

 

 

 

سیستم های درزگیری

درزگیرها

اجرای درزگیری و پر نمودن درزهای انبساط در کانالهای انتقال آب و محوطه پالایشگاه و فرودگاهها ، درزگیری ترکهای سطحی آسفالت و بتن، درزگیری باند فرودگاهها ، درزگیری پارکینگ های طبقاتی ، درزگیری منابع ذخیره آب بتنی با ماستیک پلی یورتان و ...

پوشش سطوح فلزی و بتنی

پوشش سطوح بتنی وفلزی در شرایط مغروق در آب، فاضلاب ، مواد شیمیایی و بعنوان یک غشاء محافظ الاستومری در تصفیه خانه های فاضلاب ،خطوط لوله مخازن محیط های دریایی و...

سیستم های کف پوش

اجرای کف پوشهای صنعتی بتنی و اپوکسی- رزینی و کف سابی بتن و اجرای فوم بتن کف

کف پوش پلی یورتان و پلی یوریا ، کف پوش ضد ضربه، کف پوش ضد سایش ویکپارچه در کف پوش فرودگاهها ، کف پوش پارکینگها ، کف پوش سرد خانه ها و کف پوش محیط های تحت تنش و لرزش ، کف پوش کارخانجات شیمیایی و بهداشتی و...

کف سازی مقاوم بتنی صنعتی جهت پوشش کف پوش کارخانه ها و کف پوش پارکینگ ها ، کف پوش کشتارگاهای صنعتی ، کف پوش بتن سخت ، کف پوش بتن لیسه ای و انجام و اجرای کف سابی بتن جهت صیقلی نمودن سطح بتن ناهموار و متخلخل.

سیستمهای ترمیمی بتن

ترمیم بتن به منظور حفاظت از خوردگی آرماتورها ، ترمیم بتن در محیطهای صنعتی داخلی و خارجی و ترمیم بتن سطوح در معرض تنشهای زیاد و ترمیم بتن سنگین نظیر کف های صنعتی ، ترمیم بتن پارکینگ ها ، ترمیم بتن فرودگاه ها، ترمیم بتن رمپ ها و ترمیم بتن صنایع استراتژیک و...

تقویت سازه های بتونی با استفاده از آخرین فن آور یها، با روش تزریق رزین FRP ، کاشت آرماتور ، کاشت میلگرد ، کاشت بولت ، مغزه گیری بتن ، کر گیری ، تست های غیر مخرب و آزمایشگاهی بتن .

تثبیت لایه های خاک ، زیر سازی خاک ، بستر سازی خاک ، جداره سازی خاک ، ترا نشه ، آب بندی حوضچه های خاکی و کانالهای سطح شهر

تثبیت دیواره های تونل ها ، ترانشه های بتنی ، تثبیت پی ها وجلوگیری از ادامه نشست سازه با تزریق رزین ویژه در خاک زیر پی

سیستم های رنگهای صنعتی

محافظت سطوح داخلی و خارجی مخازن آب ، تجهیزات انتقال آب، لوله ها ، سازه های فلزی در معرض شرایط جوی و بعنوان پرایمر سطوح فلزی در سیستمهای پوششی مناطق ساحلی ، کنار دریا ، اسکله و سکو های نفتی

سیستم های ایزولاسیون

پوششهای دریایی

آب بندی دریچه عرشه کشتی، آب بندی و نشتی گیری اضطراری خطوط لوله و آب بندی تجهیزات آبی ، آب بندی سوخت و مواد نفتی، آب بندی سازه های فلزی(آب بندی آشیانه هواپیما، آب بندی سالنها، آب بندی کارگاها )، لوله گزاری سکوهای دریایی ، پوشش داخلی و خارجی در محیطهای دریایی و صنعتی، تسهیلات آب بندی بندرگاهی ، آب بندی سازه های دریایی، آب بندی کشتی ها ، آب بندی خطوط لوله، آب بندی نیروگاه ها ، آب بندی در سیستمهای پوششی در محیطهای بسیار خورنده دریایی و ...

بدین جهت کلینیک فنی و تخصصی بتن ایران با در اخیتار داشتن تجهیزات مورد نیاز ، دانش فنی و تجربه اجرایی مربوطه نسبت به ارائه این خدمات تخصصی بتن به پروژه های مختلف در سطح کشور اقدام نموده است.

گروه خدمات آزمایشگاهی بتن کلینیک بتن ایران:

آزمایش های مخرب

کلیه آزمایشهای کارگاهی و دفتری تخصصی بتن مانند اسلامپ بتن ، مقاومت فشاری بتن / کششی بتن / خمشی بتن / برشی بتن ، دانه بندی بتن ، ارزش ماسه ای بتن ، نفوذ پذیری بتن ، چسبندگی بتن ،ارائه طرح اختلاط بتن ، ارائه طرح اختلاط بتن های خاص ، واکنش زایی بتن ، مقاومت سایشی بتن و .... ، آزمایشهای سیمان بتن ، آزمایشهای مقاومتهای کششی بتن و شیمیایی واتراستاپ ، انواع آزمایشهای افزودنی های بتن.

آزمایش های غیر مخرب :

آزمایش اسکن بتن،آزمایش مغزه گیری یا کرگیری بتن،آزمایش چکش اشمیت بتن،آزمایش اسکن شبکه آرماتور،آزمایش التراسونیک بتن (شناسایی ترک بتن )

کلینیک بتن ایران در راستای همکاری با آبادگران عرصه ی عمرانی کشور آمادگی دارد در تمامی مقاطع پروژه ها همگام با کارشناسان و مهندسین قدم بردارد.

 

برچسب ها:

ماستیک پلی یورتان سوسیسی، آزمایش مقاومت الکتریکی بتن،آزمایش غیر مخرب التراسونیک بتن،تست اولتراسونیک بتن،تست جوش سازه های فلزی،تست ut، آزمایش هافسل،آزمایش نفوذپذیری بتن،تست خوردگی یون کلر،مقابله با حمله کلرایدی،تست یون کلر،طراحی روش مقاوم سازی،مقاوم سازی بتن،پرایمر پایه قیری،پوشش امولوسیونی،پرایمر آبی، پودر خشکه پاشی بتن،بتن ضد سایش،ودر بتن سخت،بتن استامپی،پودر رنگی بتن،پودر رنگی سنگ مصنوعی،پیگمن رنگی بتن،پوشش آب بند الاستومری،پوشش نفوذگر،دوغاب کریستال شونده،واتراستاپ هیدروفیل، واتر استاپ بنتونیتی،آنی گیر،کتینگ آب بند،رفع ترک سازه ،رفع نشت سازه بتنی،سیمان پلیمری تعمیری،سیمان پلیمر آب بند،تست مقاومت بتن،آزمایش چکش اشمیت،آزمایش پولاف،آزماش pull off، ultrasonic test، آب بندی تصفیه خانه شیمیایی،آببندی پمپ خانه های و دایجستر ها، حضچه های پیش ته نشینی، ستلرها،کفپوش انبار، کفپوش بتنی سوله صنعتی، کفپوش اپوکسی، کفپوش پلی یورتان، کفپوش سیمانی ، کفپوش اپوکسی آنتی استاتیک، کفپوش لاک اپوکسی ، کفپوش آنتی داست، کفپوش بتنی، کفپوش با شبکه مسی ،اجرای کفپوش پلی یورتان صنعتی و ورزشی ، کاتر بتن، اجرای کفپوشهای صنعتی مقاوم بتنی، کفپوشهای رزینی اپوکسی، افزودنی های بتن، کارکرد افزودنی های بتن،قیمت افزودنی های بتن،افزودنی بتن چیست،افزودنی بتن کرج،افزودنی بتن مشهد، افزودنی بتن اصفهان و شیراز ، یزد،تبریز ، ارومیه، شیراز،مازندران،گرگان،همدان،کرمانشاه،عسلویه،قشم،کیش،میدان نفتی یاداوران،یادآوران،الیاف افزودنی بتن،الیاف فورتا،فرتا،پرایمر پ 92 ،پرایمر p92،واتر استاپ استخر،میان بولت چدنی،میان بولت پلاستیکی،صفحه آب بند چدنی، اتصالات فلزی قالب،اسپیسر پلاستیکی،فاصله نگهدار کاور بتن،رامکار چیست،سنجاقک آرماتور بندی،دتایل درز انبساط، جزئیات اجرای درز انبساط،نحوه قالب بندی بتن، میان بولت آب بند چیست،اسکن آرماتور،اسکن بتن مسلح،اسکن میلگرد،آرماتور یاب بتن،آرماتور یابی،چسب کاشی واترپروف،بتن واترپروف، بتن سیلیس دار،ماسه سیلیسی ریخته گری، ماسه سیلیسی، پودر سیلیس ، پودر میکروسیلیس مش 230،مقاله بتن،مقالات بتن،چسب بتن چیست،نقش لاتکس در بتن، چسب لاتکس،کاربرد اپوکسی در بتن ،تزریق رزین اپوکسی در بتن،چسب بتن پیوندی، اتصال بتن قدیم به بتن جدید، لایه میانی بتن بتن قدیم و جدید،بتونه اپوکسی، چسب اپوکسی ، اجرای بتن ماله پروانه ای ، کفپوش بتن ماله پروانه ای،نت،دانلود کاتالوگ محصولات افزودنی بتن،دانلود کاتالوگ واتراستاپ، دانلود کاتالوگ کفپوش صنعتی ،عایق سفید،دانلود خدمات مهندسی بتن،عایق آب بند،بتن،بتون،چسب کاشی و سرامیک، چسب کاشی ساروج،ضدیخ بتن، ضد یخ بتن،بدون کلراید،ساب بتن ،اسکراب بتن،اسکن بتن مسلح، شناسنامه سازه ای ، تخمین خوردگی بتن، تعیین عمق ترک بتن،خوردگی اسیدی بتن، کفپوش بتنی تعمیرگاه،پمپ بنزین،تعمیر بتن روغنی ، ترمیم بتن،آشیانه هواپیما، ژل میکروسیلیس چیست، فوق روان کننده کربوکسیلاتی ، نفتالینی،لیگنو، چسب بتن،تولید کننده کفپوش های اپوکسی،فروش مواد شیمیایی بتن، ضدیخ پودری،اسکن سازه بتنی،خط تولید واتراستاپ، کفپوش های بهداشتی و بیمارستانی، کفپوش سالن تولید دارویی، کفپوش کلین روم، کفپوش بیمارستانی، ژل میکروسیلیکا، ژل میکروسیلیس ،الیاف افزودنی بتن،شرکت تولید کننده افزودنی بتن،اپوکسی،مقاله بتنی، خبرنامه بتن، مجله بتن،نشریه بتن، اجرای کفپوش کامپوزیت،اجرای فوم بتن،اجرای بتن الیافی ،کلینیک بتن ایران.بتن سخت پایه سیمانی، کفپوش بتن سخت پایه سیمانی ، بتن رنگی، ترک در سازه بتنی، ملات خودتراز شونده بتنی،سایت بتن،آزمایشگاه بتن ،آزمایشگاه مکانیک خاک،آزمایش ارزش ماسه ای ، آزمایش بتن، دستگاه های تست غیر مخرب بتن،لوازم آزمایشگاهی بتن،آزمایشگاه همکار،شرکت مشاور بتن،شرکت مشاور سازه های بتنی،طراحی طرح اختلاط بتن، اجرای پیوینگ بتن، اجرای محوطه سازی بتنی. کفپوش سوله.کفپوش رنگی کارخانه،مقاوم سازی با الیاف frp، پوشش frp، پوشش ضد حریق،ضد آتش، بتن ضد آتش، پوشش فایر پروف، ترمیم اتصال تیر به ستون،اجرای پوشش ضد حریق پایپ راک پتروشیمی، کر گیری بتن مسلح، ایجاد اوپنینگ در بتن مسلح،کاشت آرماتور،میلگرد،ستون، بولت فلزی،بلت، لمینت frp،الیاف تقویتی اف آر پی ،رزین frp، چسب کاشت آرماتور،خمیر کاشت آرماتور،کالم،هیلتی،ماستیک پلی یورتان آلمانی،مواد آب بند سوئیسی.

 


 
کاشت میلگرد رول بولت و مقاوم سازی با الیاف Frp در گیلان و مازندران
ساعت ۸:٢٦ ‎ق.ظ روز ۱۳٩٤/٥/۸  کلمات کلیدی: مقاوم سازی با الیاف frp ، مقاوم سازی با الیاف اف ار پی ، مقاوم سازی با الیاف frp در مازندران ، مقاوم سازی با الیاف frp در گیلان

ورق هایFRP  به سبب نسبت مقاومت به وزن بالا، مقاومت در مقابل خوردگی و مواد شیمیایی، مقاومت در برابر خستگی ناشی از بارگذاری و همچنین نصب سریع در چند سال اخیر جهت امر بهسازی و ترمیم سازه ها خصوصاً سازه های بتنی به شدت مورد توجه قرار گرفته اند. لایه های با وزنی معادل 20% وزن فولاد غالباً مقاومتی در حدود 2 تا 10 برابر فولاد از خود نشان می دهند که وجود این خاصیت سبب استفاده گسترده از الیاف فوق در صنایع گوناگون گردیده است. سالهای زیادی است که از الیاف FRP در صنایع هوا فضا استفاده می گردد. روشهای مختلف و متعددی برای این موضوع مطرح گشته است. سادگی اجرای FRP ها در عین سرعت عمل بالا، وزن کم، مقاومت کششی بالای ورق‌ها، مقاومت در برابر خوردگی، جذب ارتعاشات و افزایش مقاومت و استحکام سازه میباشد.

اما در گذشته بهای نسبتاً سنگین این الیاف سبب گردیده بود که استفاده از آنها در صنعت ساختمان ناچیز و محدود باشد لیکن امروزه به دلیل گسترش تولید این مواد و به طبع آن کاهش بهای آنها و همچنین به سبب برتری های خاص این الیاف، می توان توجیه مناسب اقتصادی برای استفاده از آنها ارائه نمود.

با توجه به نوپا بودن این تکنیک تقویت، از اواسط دهه نود فعالیت های گسترده ای بر روی بررسی رفتار این پلیمرها در مقاوم سازی خمشی تیرهای بتنی بوسیله چسباندن این الیاف به ناحیه تحت کشش مقطع انجام شده است که همگی آنها بر بهبود رفتار مکانیکی و افزایش مقاومت خمشی تیرها تاکید دارند.

جهت بررسی کامل تیرهای بتنی مقاوم سازی شده واضح است که علاوه بر جنبه های مقاومتی، عملکرد اعضاء تحت شرایط بهره برداری نیز باید رضایت بخش باشند و این امر با تامین مقاومت کافی برای عضو خودبخود تحقق نمی یابد. در یک عضو که به روش مقاومت نهایی طرح شده است ممکن است تغییر مکانهای ایجاد شده تحت بارهای بهره برداری بیش از اندازه بزرگ باشد به طوری که سبب آسیب رساندن به قسمتهای غیر سازه ای شود و یا از سویدیگر، ترکهای ایجاد شده در تیرها ممکن است به اندازه ای بزرگ باشند که خوردگی آرماتورها را موجب شود و از نظر ظاهری نیز نا مطلوب باشد.

در این تحقیق آزمایشگاهی اثر ورقهای FRP در مقاوم سازی خمشی تیرهای بتن مسلح حاوی بتن با مقاومت بالا مورد بررسی قرار گرفته است. میزان آرماتور کششی و تعداد لایه FRP در ساخت نمونه ها و تقویت آنها به عنوان متغیر در نظر گرفته شده است. تعداد شش تیر بتنی دارای سطح مقطع، طول و میزان میلگرد فشاری و برشی یکسان حاوی بتن با مقاومت بالا، دارای آرماتور کششی برابر با  و  ساخته شده و تحت آزمایش خمش چهار نقطه ای قرار گرفته وشرایط بهره برداری آنها مورد بررسی قرار گرفته است. از شش نمونه ذکر شده دو نمونه بدونبه عنوان نمونه شاهد و چهار نمونه دیگر با یک و چهار لایه FRP مقاوم سازی شده اند. 

جهت بررسی دقیق رفتار این تیرها تعداد قابل توجهی کرنش سنج روی میلگردهای کششی، فشاری و همچنین سطح بتن و FRP نصب شده که نتایج حاصله در این تحقیق دال بر عملکردمطلوب ورقهای تقویت کننده در شرایط بهره برداری می باشد.

جزئیات نمونه ها و روش انجام آزمایشات

نمونه های آزمایش

در این تحقیق 6 تیر بتن مسلح حاوی بتن با مقاومت بالا، با سطح مقطع و طول یکسان ساخته شده و تا لحظه شکست تحت آزمایش خمش چهار نقطه ای قرار گرفتند. تیرها با توجه به مقدار آرماتور کششی آنها به دو گروه تقسیم شده و از هر گروه یک نمونه به عنوان تیر کنترل و بدون مقاوم سازی مورد آزمایش قرار گرفته و بقیه نمونه ها با یک و چهار لایه الیاف کربن مقاوم سازی شده و سپس تحت بارگذاری قرار گرفتند. طول همه تیرهای مورد آزمایش 300 سانتیمتر بود که بر روی تکیه گاههایی با دهانه 270 سانتیمتر مورد بارگذاری و آزمایش قرار گرفتند. با توجه به نتایج آزمایشات گذشته ، جهت افزایش اثر مقاوم سازی و تاخیر در جدا شدگی FRP از سطح بتن، طول FRP مصرفی برابر با 260 سانتیمتر در نظر گرفته شده است که تقریباً تمامی طول دهانه تیر را پوشش می دهد.

سطح مقطع تمامی تیرها مستطیلی و به ابعاد 25×15 سانتیمتر در نظر گرفته شده است. آرماتور فشاری تمامی تیرها دو عدد میلگرد با قطر 10 میلیمتر و آرماتور کششی نمونه های سری  الف دو عدد میلگرد با قطر 16 میلیمتر و برای نمونه های سری ب دو عدد میلگرد با قطر 22 میلیمتر منظور شده است. برای تمامی تیرها از آرماتور برشی یکسان استفاده شده است که عبارت است از خاموت بسته به قطر 10 میلیمتر که در فاصله 9 سانتیمتر از یکدیگر در دهانه های برشی تیر پخش شده اند و طراحی این خاموتها به گونه ای است که از شکست برشی تیرها جلوگیری شده و شکست نمونه ها بصورت خمشی اتفاق بیفتد. برای بارگذاری از دو بار متمرکز متقارن که به فاصله 90 سانتیمتر از یکدیگر قرار گرفته اند استفاده شده است. به این ترتیب، مقدار دهانه برش برابر با 90 سانتیمتر و نسبت طول دهانه برشی به عمق مؤثر برابر با 1/4 می شود که این مقدار، تیرهای مورد نظر را در رده تیرهای معمولی قرار می دهد. 

کرنش سنجهای الکتریکی بر روی آرماتور کششی، فشاری، برشی و همچنین سطح بتن و FRP در نقاط مختلف چسبانده شده تا در بارهای مختلف قادر به اندازه گیری میزان کرنش در مقاطع مختلف بوده تا با استفاده از آن قادر به محاسبه میزان تنش و همچنین انحناء تیر باشیم. با استفاده از خیز سنجهای الکتریکی با دقت بالا که در نقاط مختلفی از تیر قرار گرفته اند، روند افزایش خیز تیر نیز به طور کامل مورد بررسی قرار گرفته است. با استفاده از دوربین ترک سنج، عرض بزرگترین ترک خمشی و برشی نیز اندازه گیری و با هر افزیش باری قرائت و ثبت می شوند. 

نام هر تیر از دو حرف تشکیل شده است که حرف اول نشان دهنده میزان آرماتور کششی ( سری A یا B) و نام دوم نشان دهنده تعداد لایه FRP مصرفی جهت مقاوم سازی نمونه می باشد. در جدول 1 مشخصات تیرهای ساخته شده در این تحقیق آورده شده است.

جدول 1: مشخصات تیرهای آزمایش شده در این تحقیق

 

Series

Test beam

 

 

 

 (mm2)

CFRP layers

A

AH0

2F16

2F10

F10@9cm

0

0

AH1

2F16

2F10

F10@9cm

6.75

1

 

AH4

2F16

2F10

F10@9cm

27

4

 

B

BH0

2F22

2F10

F10@9cm

0

0

BH1

2F22

2F10

F10@9cm

6.75

1

 

BH4

2F22

2F10

F10@9cm

27

4

 

 

خواص مصالح مصرفی

برای هر تیر تعداد 3 عدد نمونه مکعبی 10×10×10 سانتیمتر در هنگام بتن ریزی نمونه ها ساخته شده و در شرایط مشابه با تیرها عمل آوری شدند. این نمونه ها در سن 28 روزه تحت آزمایش فشار قرار گرفته و میانگین مقاومت فشاری آنها برابر با 962 کیلوگرم بر سانتیمتر مربع بدست آمد. برای تبدیل مقاومت فشاری نمونه های مکعبی به مقاومت فشاری نمونه استوانه ای استاندارد از ضریب 8/0  استفاده شد که بدین ترتیب مقاومت فشاری بتن مصرفی در تمامی تیرهای ساخته شده در این تحقیق برابر با 770 کیلوگرم بر سانتیمتر مربع در نظر گرفته می شود. میلگردهای آجدار مصرفی ساخت کارخانه ذوب آهن اصفهان و دارای تنش تسلیمی برابر باکیلوگرم بر سانتیمتر مربع می باشند. FRP مورد استفاده در این تحقیق از نوع کربن با جرم حجمی 78/1 گرم بر سانتیمتر مکعب بوده و ضخامت هر لایه آن برابر با 045/0 میلیمتر می باشد. رفتار این ماده تا لحظه شکست به صورت خطی بوده که کارخانه سازنده تنش کششی حداکثر و مدول الاستیسیته آن را به ترتیب برابر با 38500 و 105 ×23 کیلوگرم بر سانتیمتر مربع اعلام کرده است. کرنش شکست FRP مصرفی برابر با 7/1 درصد می باشد.

روش انجام مقاوم سازی

پس از بتن ریزی، نمونه ها به مدت 28 روز تحت شرایط کاملاً مرطوب عمل آوری شدند. دو عدد از تیرها به عنوان نمونه کنترل بدون انجام مقاوم سازی تحت بارگذاری قرار گرفتند. سطح کششی تیرهای دیگر ابتدا توسط سنگ فرز به میزان 1 تا 2 میلیمتر ساب زده شده و سپس توسط استون به طور کامل تمیز می گردند. چسب مورد استفاده برای لایه اول ( بین سطح بتن و FRP) از نوعبوده که چسبی دو جزئی بوده که پس از اختلاط، توسط کاردک به طور کامل روی سطح بتن مالیده شده و اولین لایه FRP روی آن قرار گرفته و کاملاً توسط چسب اشباع می گردد. برای چسباندن لایه های بعدی ( بین ورقهای FRP) از چسبی دو جزئی با نام تجاری EP-IN  استفاده می شود. این چسب توسط فرچه معمولی روی FRP مالیده شده و سپس لایه بعدیروی آن قرار می گیرد.

 پس از کامل شدن عملیات مقاوم سازی نمونه ها حداقل به مدت 7  روز در شرایط آزمایشگاهنگهداری شده و پس از نصب کرنش سنج های الکتریکی لازم روی سطح FRP و بتن، تحت بارگذاری قرار می گیرند. بارگذاری نمونه ها به صورت مرحله ای افزایش پیدا می کند و پس از هر افزایش بار، مشاهدات عینی، قرائت کرنش سنج ها و خیز سنج ها و همینطور نحوه گسترش ترکها روی سطح تیر به همراه عرض عریضترین ترکهای خمشی و برشی به طور کامل ثبت می گردد.

ارزیابی نتایج آزمایشات

سختی و تغییر مکان

منحنی تیرهای مقاوم سازی شده، از ابتدا تا انتهای مرحله رفتار خطی نمونه ها به خوبی بر روی نمونه کنترل نظیر خود منطبق است لذا می توان نتیجه گرفت که در حالت بهره برداری، سختی و تغییر مکان نمونه های مقاوم سازی شده( صرفنظر از تعداد لایه FRP)، با نمونه کنترل کاملاً همخوانی دارد. اما در ناحیه پلاستیک و تا لحظه شکست، با افزایش تعداد لایه FRP، سختی تیر افزایش پیدا کرده ولی خیز آن به مقدار زیادی کاهش پیدا می کند که این امر بر کاهش  شکل پذیری نمونه های مقاوم سازی شده نسبت به نمونه کنترل دلالت دارد. 

عرض ترک

با توجه به اینکه ایجاد ترک در سازه‌های بتنی نه تنها اجتناب ناپذیر است بلکه برای استفاده موثر از آرماتور لازم نیز هست. مقدار مجاز عرض ترک تحت بارهای بهره برداری بستگی به شرایطمحیطی دارد. جدول 3  عرض مجاز ترک را مطابق توصیه کمیته 224 انجمن بتن آمریکا ارائه می کند.

جدول 3 : عرض مجاز ترکهای خمشی 

 

 

شرایط محیطی                                             عرض مجاز ترک ( mm)

هوای خشک یا پوشش محافظ                                                41/0

رطوبت، هوای مرطوب، تماس با خاک                                       3/0

آب دریا، خشک و تر شدن متوالی                                           15/0

سازه های نگهدارنده آب                                                     1/0

 

با افزایش FRP، طیف افقی نمودار کاهش می یابد، این پدیده حاکی از عدم افزایش قابل توجه عرض ترک با وجود جاری شدن فولاد کششی می‌باشد. همچنین در محدوده بارهای سرویس، دستیابی به عرض ترکهای بسیار کم با استفاده از FRP به خوبی قابل مشاهده است.

نتیجه گیری:

در این تحقیق با بررسی اثر لایه های فیبر کربن بر روی مقاومت خمشی تیرهای بتنی تقویت شده با FRP، نتایج زیر در حالت سرویس حاصل گردید.

الف- در حالت بهره برداری، سختی و تغییر مکان نمونه های مقاوم سازی شده( صرفنظر از تعداد لایه FRP)، با نمونه کنترل کاملاً همخوانی دارد. اما در ناحیه پلاستیک و تا لحظه شکست، با افزایش تعداد لایه FRP، سختی تیر افزایش پیدا کرده ولی خیز آن به مقدار زیادی کاهش پیدا می کند که این امر بر کاهش  شکل پذیری نمونه های مقاوم سازی شده نسبت به نمونه کنترل دلالت دارد. 

ب- با افزایش FRP، طیف افقی نمودار ممان – عرض ترک کاهش یافته است، این پدیده حاکی ازعدم افزایش قابل توجه عرض ترک با وجود جاری شدن فولاد کششی می‌باشد. 

ج- در محدوده بارهای سرویس، دستیابی به عرض ترکهای بسیار کم با استفاده از FRP به خوبی قابل مشاهده است.

منبع : کلینیک بتن ایران

 

فروش انواع اسپیسر در استان گیلان

تولیدات خاص ساختمانی (کتراک ، روغن قالب و…)

آببندی تخصص ماست

عایق بی رنگ نما

عایق ساختمان

اجرا واتر استاپ

کاشت میلگرد

عایق سقف تهرانی

مقاوم سازی سازه تتخصص ماست

مهندس عباس پرتوی دیلمی

مهندس شهاب فلاح چای

09120215547


 
مشاوره و ارائه انواع گروت های اپوکسی و سیمانی - تزریق گروت و اجرای گروت
ساعت ۸:٢٢ ‎ق.ظ روز ۱۳٩٤/٥/۸  کلمات کلیدی: گروت در مازندران ، آببندی در مازندران ، آببندی استخر در گیلان و مازندران ، عایق استخر ، عایق پایه سیمانی

گروت پایه سیمانی  تشکیل شده از آب ، سیمان ، ماسه و افزودنی های متداول دیگر می باشد. از گروت ها جهت پر کردن فضاهای خالی و ترک های بزرگ ، لایه لایه شدن و یا خرد شدن استفاده می شود.از این لحاظ کاربرد گروت مشابه ملات می باشد. گروت کاربردی در زیر صفحه ستون ها، آنکربلت ها، نصب ریل ماشین آلات، برینگ پل ها، بلت ها، ریل ها، حایل ها دارند. مهم ترین مزایای گروت ها این است که مکانی که در آن گروت ریخته می شود را کامل پر می کند. چون گروت منبسط شونده خاصیت غیر انقباضی دارد از گروت آماده جهت مصارف مختلفی مثل، زیر صفحه ستون ها، آنکربلت ها، نصب ریل ماشین آلات، برینگ پل ها، بلت ها، ریل ها، حایل ها و ...استفاده می شود. گروت ها به گونه ای طراحی شده اند که توان جذب نیروهای وارد و انتقال آن ها را به بخش زیرکار داشته باشد برای مثال در هنگام نصب انواع ماشین آلات نیروهای وارده از آن ها توسط گروت یا ملات به فنداسیون بتنی منتقل می شود. ملات ها و گروت ها باعث مقاومت های مطلوب و مطمئن و همچنین اتصال پایدار بین ملات یا گروت و سازها قرار گیرد و بر روی آن گروت یا ملات قرارگیرد از یک طرف و سطح زیرکار از طرف دیگر می شود. بطور کلی دو روش ملات ریزی یا گروت ریزی در داخل حفرات در محل اتصال آنکرو وجود دارد.


گروت اپوکسی شکل پذیر و بدون حلال و شامل 3 جزء می باشد. گروت اپوکسی دارای رزین اپوکسی، سخت کننده، عمل آورنده آمین و دانه بندی ویژه سیلیسی است. در هنگام مصرف گروت اپوکسی کافیست سه جزء آن با هم مخلوط شوند.گروت اپوکسی باعث سخت شدن سریع سازه می شود که بستگی به دمای اطراف دارد . گروت اپوکسی دارای قابلیت بالای چسبندگی به زیر کارهای معدنی و فولادی دارد. گروت اپوکسی دارای مقاومت در برابر ارتعاشات شدید است. گروت اپوکسی باعث سخت شدن بدون جمع شدگی است. گروت اپوکسی دارای مقاومت بالا در برابر حملات مواد شیمیایی است. گروت اپوکسی دارای مقاومت مکانیکی بسیار بالایی است.گروت اپوکسی برای گروت کاری و ملات ریزی برای پیوند محکم سازه ای در شرایط باربری دینامیکی مناسب است.از جملهگروت ریزی درکارخانه جات و ماشین آلات موتوری. گروت ریزی در ژنراتورها. گروت ریزی در پمپ ها. گروت ریزی در ریل جرثقیل ها گروت ریزی در سیستم های انبارهای بلند

 

اجرای انواع واتر استاپ و واتر پروف های بتن

آببندی استخر در گیلان و مازندران

اجرای گروت های پایه سیمانی و اپوکسی

انواع چسب بتن ، چسب کاشی خمیری ، چسب سرامیک پودری

ضد یخ ها

افزودنی های بتن (انواع روان کننده و فوق روان کننده بتن ودیرگیر کننده و زودگیر کننده ها )

پوششهای محافظتی ( انواع ترمیم کننده بتن ، کیورینگ و … )

ماستیک ها

فروش انواع اسپیسر در استان گیلان

تولیدات خاص ساختمانی (کتراک ، روغن قالب و…)

آببندی تخصص ماست

عایق بی رنگ نما

عایق ساختمان

اجرا واتر استاپ

کاشت میلگرد

عایق سقف تهرانی

مقاوم سازی سازه تتخصص ماست

مهندس عباس پرتوی دیلمی

مهندس شهاب فلاح چای

09120215547


 
بتن مسلح یا بتن آرمه
ساعت ٤:٠٢ ‎ق.ظ روز ۱۳٩٤/٥/۸  کلمات کلیدی: مقاوم سازی ساختمان فلزی ، مقاوم سازی سازه فلزی ، مقاوم سازی سازه بتنی در مازندران ، آببندی استخر در مازندران

بتن مسلح یا بتن آرمه به بتن مسلح شده با میلگرد (آرماتور) گفته می‌شود. برای مسلح کردن بتن از میلگردهای تقویتی، شبکه‌های توری تقویتی، صفحات فلزی یا الیاف تقویتی استفاده می‌گردد.

هدف اصلی استفاده از بتن آرمه، واگذاری نیروهای کششی بوجود آمده در بتن به میلگردهاست(به دلیل مقاومت کششی بالای میلگرد) تا بدین طریق نیروهای کششی به بتن وارد نشده و سبب ترک‌خوردگی و در نهایت پکیدن بتن نشود. مقاومت کششی بتن ۰٫۱ مقاومت فشاری آن است. این نوع از بتن، در سال ۱۸۴۹ توسط باغبانی فرانسوی به نام جوزف مونیر اختراع شده و در سال ۱۸۶۷ به ثبت رسید. واژه فرو بتن نیز (به انگلیسی: Ferro Concrete) تنها به بتنی اشاره دارد که توسط آهن یا فولاد تقویت شده باشد. از مواد دیگری همچون الیاف آلی و معدنی نیز می‌توان به مانند کامپوزیت‌هایی در اشکال مختلف برای تقویت بتن استفاده کرد.

بتن نیروهای فشاری را به خوبی تحمل می‌کند؛ اما در برابر نیروهای کششی ضعیف است. پس با مسلح کردن بتن، می‌توان مقاومت کششی آن را افزایش داد. علاوه بر این، کرنش شکست بتن در کشش، بسیار پایین است که با مسلح نمودن آن می‌توان دو لبه بتن ترک‌خورده را به هم نزدیک کرد. برای داشتن یک ساختمان محکم، انعطاف‌پذیر و بادوام، مواد و مصالح تقویت کننده بتن باید ویژگی‌های زیر را داشته باشند:

  • مقاومت بالا
  • کرنش کششی زیاد
  • پیوستگی مناسب با بتن
  • سازگاری با حرارت زیاد
  • ماندگاری بالا در محیط بتن

در بیشتر موارد، برای بالا بردن تاب بتن، از میلگردهای فولادی جهت مسلح کردن بتن استفاده می‌شود.

 

 

مقاوم سازی سازه تتخصص ماست

مهندس عباس پرتوی دیلمی

مهندس شهاب فلاح چای

09120215547

 

 
مهندسی و اجرای ترمیم سازه های بتنی
ساعت ۳:٥٩ ‎ق.ظ روز ۱۳٩٤/٥/۸  کلمات کلیدی: مقاوم سازی سازه های بتنی در گیلان و مازندران ، ترمیم بتن در گیلان ، ترمیم بتن در مازندران ، ترمیم و مقاوم سازی در مازندران

مهندسی و اجرای ترمیم سازه های بتنی

هر سازه بتنی در طول مراحل ساخت و بهره برداری می تواند به علل مختلف مانند خوردگی آرماتورها ، نفوذ آب ، حمله سولفات و کلر ها ، کربناتاسیون ، قلیایی بتن ، اشتباهات طراحی و بارگذاری ، حوادث ، ترک های ناشی ازجمع شدگی و عدم کیورینگ و نگهداری مناسب ، عدم اجرای نامناسب بتن ، عدم کیفیت لازم طرح اختلاط ، عدم فراهم بودن شرایط مناسب بتن ریزی و ... دچار نقص کیفی در بتن گردد که باعث تحلیل عضو بتنی کاهش شدید دوام و مقاومت بتن و حتی از بین ر فتن دائمی عضو می گردد.

از سوی دیگر بدیهیست که هر گونه ترمیم و تعمیر اصولی و کارآمد بتن نیازمند تشخیص کارشناسی عوامل ایجاد کننده نقص و تشریح نیازهای مورد نظر از ترمیم می باشد که این امر به نوبه خود نیازمند احاطه کامل کارشناسان به مصالح متنوع ترمیمی چه از نظر ساختار و چه از منظر کاربرد و اجرا می باشد . چراکه عدم رعایت اصول و مراحل ترمیم بتن می تواند باعث تشدید آسیب ها ، تحمیل هزینه های مضاعف و کاهش بیش از پیش کیفیت عضو و کاربری آن می شود . از این رو پر واضح است که یک عملیات ترمیم اصولی ، با کیفیت و با دوام ، در تعامل با مجموعه ای از دانش های فنی وتجربه اجرایی مورد نیاز انجام پذیر است .

مقاوم سازی سازه تتخصص ماست

مهندس عباس پرتوی دیلمی

مهندس شهاب فلاح چای

09120215547

دفترگیلان – لاهیجان – خیابان امام خمینی – روبروی تاکسی تلفنی شمال -کلینیک ساختمانی پرتوی

 

 

 
مقاوم سازی سازه های بتنی به روش FRP و ...
ساعت ۳:٥٤ ‎ق.ظ روز ۱۳٩٤/٥/۸  کلمات کلیدی: کاشت بولت در مازندران ، کاشت میلگرد در متل قو ، کاشت میلگرد در مازندران ، کاشت میلگرد در گیلان ، مقاوم سازی در گیلان ، مقاوم سازی در گیلان و مازندران

مقاوم سازی سازه های بتنی به روش FRP و ...

این مجموعه مهندسی ، آمادگی دارد تا خدمات مهندسی و مشاوره ای خود را در زمینه مقاوم سازی سازه های بتنی صنعتی و مسکونی با استفاده از روشهای مختلف مانند استفاده از الیاف FRP و ... نسبت به ارائه این خدمات تخصصی بتن به پروژه های مختلف در شمال کشور ارائه نماید.

 

اجرای انواع واتر استاپ و واتر پروف های بتن

آببندی استخر در گیلان و مازندران

اجرای گروت های پایه سیمانی و اپوکسی

انواع چسب بتن ، چسب کاشی خمیری ، چسب سرامیک پودری

ضد یخ ها

افزودنی های بتن (انواع روان کننده و فوق روان کننده بتن ودیرگیر کننده و زودگیر کننده ها )

پوششهای محافظتی ( انواع ترمیم کننده بتن ، کیورینگ و … )

ماستیک ها

فروش انواع اسپیسر در استان گیلان

تولیدات خاص ساختمانی (کتراک ، روغن قالب و…)

آببندی تخصص ماست

عایق بی رنگ نما

عایق ساختمان

اجرا واتر استاپ

کاشت میلگرد

عایق سقف تهرانی

مقاوم سازی سازه تتخصص ماست

مهندس عباس پرتوی دیلمی

مهندس شهاب فلاح چای

09120215547

دفترگیلان – لاهیجان – خیابان امام خمینی – روبروی تاکسی تلفنی شمال -کلینیک ساختمانی پرتوی